1,570 research outputs found
A radio jet drives a molecular and atomic gas outflow in multiple regions within one square kiloparsec of the nucleus of the nearby galaxy IC5063
We analyzed near-infrared data of the nearby galaxy IC5063 taken with the
Very Large Telescope SINFONI instrument. IC5063 is an elliptical galaxy that
has a radio jet nearly aligned with the major axis of a gas disk in its center.
The data reveal multiple signatures of molecular and atomic gas that has been
kinematically distorted by the passage of the jet plasma or cocoon within an
area of ~1 kpc^2. Concrete evidence that the interaction of the jet with the
gas causes the gas to accelerate comes from the detection of outflows in four
different regions along the jet trail: near the two radio lobes, between the
radio emission tip and the optical narrow-line-region cone, and at a region
with diffuse 17.8 GHz emission midway between the nucleus and the north radio
lobe. The outflow in the latter region is biconical, centered 240 pc away from
the nucleus, and oriented perpendicularly to the jet trail. The diffuse
emission that is observed as a result of the gas entrainment or scattering
unfolds around the trail and away from the nucleus with increasing velocity. It
overall extends for >700 pc parallel and perpendicular to the trail. Near the
outflow starting points, the gas has a velocity excess of 600 km/s to 1200 km/s
with respect to ordered motions, as seen in [FeII], Pa alpha, or H2 lines. High
H2 (1-0) S(3)/S(1) flux ratios indicate non-thermal excitation of gas in the
diffuse outflow.Comment: Accepted for publication in Ap
Global catastrophic risks survey
At the Global Catastrophic Risk Conference in Oxford (17‐20 July, 2008) an informal survey was circulated among participants, asking them to make their best guess at the chance that there will be disasters of different types before 2100. This report summarizes the main results
Relativistic Disk Reflection in the Neutron Star X-ray Binary XTE J1709-267 with NuSTAR
We perform the first reflection study of the soft X-ray transient and Type 1
burst source XTE J1709-267 using NuSTAR observations during its 2016 June
outburst. There was an increase in flux near the end of the observations, which
corresponds to an increase from 0.04 L to 0.06
L assuming a distance of 8.5 kpc. We have separately examined
spectra from the low and high flux intervals, which were soft and show evidence
of a broad Fe K line. Fits to these intervals with relativistic disk reflection
models have revealed an inner disk radius of (where
) for the low flux spectrum and
for the high flux spectrum at the 90\% confidence level. The disk is likely
truncated by a boundary layer surrounding the neutron star or the
magnetosphere. Based on the measured luminosity and using the accretion
efficiency for a disk around a neutron star, we estimate that the theoretically
expected size for the boundary layer would be from the
neutron star's surface, which can be increased by spin or viscosity effects.
Another plausible scenario is that the disk could be truncated by the
magnetosphere. We place a conservative upper limit on the strength of the
magnetic field at the poles, assuming and , of
G, though X-ray pulsations have not been detected
from this source.Comment: Accepted for publication in ApJ, 5 pages, 4 figures, 1 table. arXiv
admin note: text overlap with arXiv:1701.0177
Prediction and explanation in the multiverse
Probabilities in the multiverse can be calculated by assuming that we are
typical representatives in a given reference class. But is this class well
defined? What should be included in the ensemble in which we are supposed to be
typical? There is a widespread belief that this question is inherently vague,
and that there are various possible choices for the types of reference objects
which should be counted in. Here we argue that the ``ideal'' reference class
(for the purpose of making predictions) can be defined unambiguously in a
rather precise way, as the set of all observers with identical information
content. When the observers in a given class perform an experiment, the class
branches into subclasses who learn different information from the outcome of
that experiment. The probabilities for the different outcomes are defined as
the relative numbers of observers in each subclass. For practical purposes,
wider reference classes can be used, where we trace over all information which
is uncorrelated to the outcome of the experiment, or whose correlation with it
is beyond our current understanding. We argue that, once we have gathered all
practically available evidence, the optimal strategy for making predictions is
to consider ourselves typical in any reference class we belong to, unless we
have evidence to the contrary. In the latter case, the class must be
correspondingly narrowed.Comment: Minor clarifications adde
Anthropic reasoning in multiverse cosmology and string theory
Anthropic arguments in multiverse cosmology and string theory rely on the
weak anthropic principle (WAP). We show that the principle, though ultimately a
tautology, is nevertheless ambiguous. It can be reformulated in one of two
unambiguous ways, which we refer to as WAP_1 and WAP_2. We show that WAP_2, the
version most commonly used in anthropic reasoning, makes no physical
predictions unless supplemented by a further assumption of "typicality", and we
argue that this assumption is both misguided and unjustified. WAP_1, however,
requires no such supplementation; it directly implies that any theory that
assigns a non-zero probability to our universe predicts that we will observe
our universe with probability one. We argue, therefore, that WAP_1 is
preferable, and note that it has the benefit of avoiding the inductive
overreach characteristic of much anthropic reasoning.Comment: 7 pages. Expanded discussion of selection effects and some minor
clarifications, as publishe
Sequential Extensions of Causal and Evidential Decision Theory
Moving beyond the dualistic view in AI where agent and environment are
separated incurs new challenges for decision making, as calculation of expected
utility is no longer straightforward. The non-dualistic decision theory
literature is split between causal decision theory and evidential decision
theory. We extend these decision algorithms to the sequential setting where the
agent alternates between taking actions and observing their consequences. We
find that evidential decision theory has two natural extensions while causal
decision theory only has one.Comment: ADT 201
An Infrared Divergence Problem in the cosmological measure theory and the anthropic reasoning
An anthropic principle has made it possible to answer the difficult question
of why the observable value of cosmological constant (
GeV) is so disconcertingly tiny compared to predicted value of vacuum
energy density GeV. Unfortunately, there is a
darker side to this argument, as it consequently leads to another absurd
prediction: that the probability to observe the value for randomly
selected observer exactly equals to 1. We'll call this controversy an infrared
divergence problem. It is shown that the IRD prediction can be avoided with the
help of a Linde-Vanchurin {\em singular runaway measure} coupled with the
calculation of relative Bayesian probabilities by the means of the {\em
doomsday argument}. Moreover, it is shown that while the IRD problem occurs for
the {\em prediction stage} of value of , it disappears at the {\em
explanatory stage} when has already been measured by the observer.Comment: 9 pages, RevTe
- …