865 research outputs found
Decompactifications and Massless D-Branes in Hybrid Models
A method of determining the mass spectrum of BPS D-branes in any phase limit
of a gauged linear sigma model is introduced. A ring associated to monodromy is
defined and one considers K-theory to be a module over this ring. A simple but
interesting class of hybrid models with Landau-Ginzburg fibres over CPn are
analyzed using special Kaehler geometry and D-brane probes. In some cases the
hybrid limit is an infinite distance in moduli space and corresponds to a
decompactification. In other cases the hybrid limit is at a finite distance and
acquires massless D-branes. An example studied appears to correspond to a novel
theory of supergravity with an SU(2) gauge symmetry where the gauge and
gravitational couplings are necessarily tied to each other.Comment: PDF-LaTeX, 34 pages, 2 mps figure
Quivers from Matrix Factorizations
We discuss how matrix factorizations offer a practical method of computing
the quiver and associated superpotential for a hypersurface singularity. This
method also yields explicit geometrical interpretations of D-branes (i.e.,
quiver representations) on a resolution given in terms of Grassmannians. As an
example we analyze some non-toric singularities which are resolved by a single
CP1 but have "length" greater than one. These examples have a much richer
structure than conifolds. A picture is proposed that relates matrix
factorizations in Landau-Ginzburg theories to the way that matrix
factorizations are used in this paper to perform noncommutative resolutions.Comment: 33 pages, (minor changes
C^2/Z_n Fractional branes and Monodromy
We construct geometric representatives for the C^2/Z_n fractional branes in
terms of branes wrapping certain exceptional cycles of the resolution. In the
process we use large radius and conifold-type monodromies, and also check some
of the orbifold quantum symmetries. We find the explicit Seiberg-duality which
connects our fractional branes to the ones given by the McKay correspondence.
We also comment on the Harvey-Moore BPS algebras.Comment: 34 pages, v1 identical to v2, v3: typos fixed, discussion of
Harvey-Moore BPS algebras update
On the Matrix Description of Calabi-Yau Compactifications
We point out that the matrix description of M-theory compactified on
Calabi-Yau threefolds is in many respects simpler than the matrix description
of a compactification. This is largely because of the differences between
D6 branes wrapped on Calabi-Yau threefolds and D6 branes wrapped on six-tori.
In particular, if we define the matrix theory following the prescription of Sen
and Seiberg, we find that the remaining degrees of freedom are decoupled from
gravity.Comment: 12 pages, harvmac big; comment on 4d N=1 theories change
Heterotic-Type II duality in the hypermultiplet sector
We revisit the duality between heterotic string theory compactified on K3 x
T^2 and type IIA compactified on a Calabi-Yau threefold X in the hypermultiplet
sector. We derive an explicit map between the field variables of the respective
moduli spaces at the level of the classical effective actions. We determine the
parametrization of the K3 moduli space consistent with the Ferrara-Sabharwal
form. From the expression of the holomorphic prepotential we are led to
conjecture that both X and its mirror must be K3 fibrations in order for the
type IIA theory to have an heterotic dual. We then focus on the region of the
moduli space where the metric is expressed in terms of a prepotential on both
sides of the duality. Applying the duality we derive the heterotic
hypermultiplet metric for a gauge bundle which is reduced to 24 point-like
instantons. This result is confirmed by using the duality between the heterotic
theory on T^3 and M-theory on K3. We finally study the hyper-Kaehler metric on
the moduli space of an SU(2) bundle on K3.Comment: 27 pages; references added, typos correcte
New Form of the T-Duality Due to the Stability of a Compact Dimension
We study behaviors of a compact dimension and the -duality, in the
presence of the wrapped closed bosonic strings. When the closed strings
interact and form another system of strings, the radius of compactification
increases. This modifies the -duality, which we call it as -duality-like.
Some effects of the -duality-like will be studied.Comment: 12 pages, Latex, no figur
D-terms and D-strings in open string models
We study the Fayet-Iliopoulos (FI) D-terms on D-branes in type II Calabi-Yau
backgrounds. We provide a simple worldsheet proof of the fact that, at tree
level, these terms only couple to scalars in closed string hypermultiplets. At
the one-loop level, the D-terms get corrections only if the gauge group has an
anomalous spectrum, with the anomaly cancelled by a Green-Schwarz mechanism. We
study the local type IIA model of D6-branes at SU(3) angles and show that, as
in field theory, the one-loop correction suffers from a quadratic divergence in
the open string channel. By studying the closed string channel, we show that
this divergence is related to a closed string tadpole, and is cancelled when
the tadpole is cancelled. Next, we study the cosmic strings that arise in the
supersymmetric phases of these systems in light of recent work of Dvali et. al.
In the type IIA intersecting D6-brane examples, we identify the D-term strings
as D4-branes ending on the D6-branes. Finally, we use N=1 dualities to relate
these results to previous work on the FI D-term of heterotic strings.Comment: 29 pages, 5 figures; v2: improved referencin
Defect Perturbations in Landau-Ginzburg Models
Perturbations of B-type defects in Landau-Ginzburg models are considered. In
particular, the effect of perturbations of defects on their fusion is analyzed
in the framework of matrix factorizations. As an application, it is discussed
how fusion with perturbed defects induces perturbations on boundary conditions.
It is shown that in some classes of models all boundary perturbations can be
obtained in this way. Moreover, a universal class of perturbed defects is
constructed, whose fusion under certain conditions obey braid relations. The
functors obtained by fusing these defects with boundary conditions are twist
functors as introduced in the work of Seidel and Thomas.Comment: 46 page
K3-fibered Calabi-Yau threefolds I, the twist map
A construction of Calabi-Yaus as quotients of products of lower-dimensional
spaces in the context of weighted hypersurfaces is discussed, including
desingularisation. The construction leads to Calabi-Yaus which have a fiber
structure, in particular one case has K3 surfaces as fibers. These Calabi-Yaus
are of some interest in connection with Type II -heterotic string dualities in
dimension 4. A section at the end of the paper summarises this for the
non-expert mathematician.Comment: 31 pages LaTeX, 11pt, 2 figures. To appear in International Journal
of Mathematics. On the web at
http://personal-homepages.mis.mpg.de/bhunt/preprints.html , #
6D supergravity without tensor multiplets
We systematically investigate the finite set of possible gauge groups and
matter content for N = 1 supergravity theories in six dimensions with no tensor
multiplets, focusing on nonabelian gauge groups which are a product of SU(N)
factors. We identify a number of models which obey all known low-energy
consistency conditions, but which have no known string theory realization. Many
of these models contain novel matter representations, suggesting possible new
string theory constructions. Many of the most exotic matter structures arise in
models which precisely saturate the gravitational anomaly bound on the number
of hypermultiplets. Such models have a rigid symmetry structure, in the sense
that there are no moduli which leave the full gauge group unbroken.Comment: 31 pages, latex; v2, v3: minor corrections, references adde
- …