120 research outputs found

    Relation between dietary cadmium intake and biomarkers of cadmium exposure in premenopausal women accounting for body iron stores

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cadmium is a widespread environmental pollutant with adverse effects on kidneys and bone, but with insufficiently elucidated public health consequences such as risk of end-stage renal diseases, fractures and cancer. Urinary cadmium is considered a valid biomarker of lifetime kidney accumulation from overall cadmium exposure and thus used in the assessment of cadmium-induced health effects. We aimed to assess the relationship between dietary cadmium intake assessed by analyses of duplicate food portions and cadmium concentrations in urine and blood, taking the toxicokinetics of cadmium into consideration.</p> <p>Methods</p> <p>In a sample of 57 non-smoking Swedish women aged 20-50 years, we assessed Pearson's correlation coefficients between: 1) Dietary intake of cadmium assessed by analyses of cadmium in duplicate food portions collected during four consecutive days and cadmium concentrations in urine, 2) Partial correlations between the duplicate food portions and urinary and blood cadmium concentrations, respectively, and 3) Model-predicted urinary cadmium concentration predicted from the dietary intake using a one-compartment toxicokinetic model (with individual data on age, weight and gastrointestinal cadmium absorption) and urinary cadmium concentration.</p> <p>Results</p> <p>The mean concentration of cadmium in urine was 0.18 (+/- s.d.0.12) μg/g creatinine and the model-predicted urinary cadmium concentration was 0.19 (+/- s.d.0.15) μg/g creatinine. The partial Pearson correlations between analyzed dietary cadmium intake and urinary cadmium or blood concentrations were r = 0.43 and 0.42, respectively. The correlation between diet and urinary cadmium increased to r = 0.54 when using a one-compartment model with individual gastrointestinal cadmium absorption coefficients based on the women's iron status.</p> <p>Conclusions</p> <p>Our results indicate that measured dietary cadmium intake can reasonably well predict biomarkers of both long-term kidney accumulation (urine) and short-term exposure (blood). The predictions are improved when taking data on the iron status into account.</p

    Ground-state band and deformation of the Z=102 isotope 254No

    Get PDF
    The ground-state band of the Z=102 isotope 254No has been identified up to spin 14, indicating that the nucleus is deformed. The deduced quadrupole deformation, β=0.27, is in agreement with theoretical predictions. These observations confirm that the shell-correction energy responsible for the stability of transfermium nuclei is partly derived from deformation. The survival of 254No up to spin 14 means that its fission barrier persists at least up to that spin

    Orientation dependence in molecular dynamics simulations of shocked single crystals

    Get PDF
    The entry distribution in angular momentum and excitation energy for the formation of 254No has been measured after the 208Pb48Ca,2n48Ca,2n reaction at 215 and 219 MeV. This nucleus is populated up to spin 22h and excitation energy >˜6 MeV above the yrast line, with the half-maximum points of the energy distributions at ˜5 MeV for spins between 12h and 22h. This suggests that the fission barrier is >˜5 MeV and that the shell-correction energy persists to high spin

    Evidence-Based Methods in Food Sciences and Nutrition

    No full text

    Particle methods for maximum likelihood estimation in latent variable models

    Get PDF
    Standard methods for maximum likelihood parameter estimation in latent variable models rely on the Expectation-Maximization algorithm and its Monte Carlo variants. Our approach is different and motivated by similar considerations to simulated annealing; that is we build a sequence of artificial distributions whose support concentrates itself on the set of maximum likelihood estimates. We sample from these distributions using a sequential Monte Carlo approach. We demonstrate state of the art performance for several applications of the proposed approach

    High-spin states following multi-nucleon transfer

    No full text
    High-spin states in neutron-rich nuclei, populated following deep-inelastic multi-nucleon transfer, have been studied using the GAMMASPHERE array at the LBNL, USA. A 64^{64}Ni beam at an energy 15%\sim 15\% above the Coulomb barrier was incident upon a thick 208^{208}Pb target, leading to the population of more than 130 different nuclei. The strongest channels correspond to nuclei close to the projectile and target, although transfer of up to 50 nucleons has been observed. New high-spin states in neutron-rich 60,62^{60,62}Fe and 68,70,72^{68,70,72}Zn nuclei have been observed. Some limitations of this method of high-spin spectroscopy are discussed, including the apparent difficulty of populating odd-odd and odd-even isotopes via this type of reaction. The data have been searched for superdeformed (SD) states in the A=A= 190–200 region, but no evidence for their presence has been found
    corecore