614 research outputs found

    Sensitive detection of photoexcited carriers by resonant tunneling through a single quantum dot

    Full text link
    We show that the resonant tunnel current through a single energy level of an individual quantum dot within an ensemble of dots is strongly sensitive to photoexcited holes that become bound in the close vicinity of the dot. The presence of these holes lowers the electrostatic energy of the quantum dot state and switches the current carrying channel from fully open to fully closed with a high on/off ratio (> 50). The device can be reset by means of a bias voltage pulse. These properties are of interest for charge sensitive photon counting devices.Comment: 5 pages, 4 figure

    Low-energy Dipole Excitations in Nuclei at the N=50,82 and Z=50 Shell Closures as Signatures for a Neutron Skin

    Full text link
    Low-energy dipole excitations have been investigated theoretically in N=50, several N=82 isotones and the Z=50 Sn isotopes. For this purpose a method incorporating both HFB and multi-phonon QPM theory is applied. A concentration of one-phonon dipole strength located below the neutron emission threshold has been calculated in these nuclei. The analysis of the corresponding neutron and proton dipole transition densities allows to assign a genuine pattern to the low-energy excitations and making them distinct from the conventional GDR modes. Analyzing also the QRPA wave functions of the states we can identify these excitations as Pygmy Dipole Resonance (PDR) modes, recently studied also in Sn and N=82 nuclei. The results for N=50 are exploratory for an experimental project designed for the bremsstrahlung facility at the ELBE accelerator.Comment: Nuclear Physics in Astrophysics III Conference, 26 - 31 March 2007, Forschungszentrum Dresden-Rossendorf, German

    Thermal Bogoliubov transformation in nuclear structure theory

    Full text link
    Thermal Bogoliubov transformation is an essential ingredient of the thermo field dynamics -- the real time formalism in quantum field and many-body theories at finite temperatures developed by H. Umezawa and coworkers. The approach to study properties of hot nuclei which is based on the extension of the well-known Quasiparticle-Phonon Model to finite temperatures employing the TFD formalism is presented. A distinctive feature of the QPM-TFD combination is a possibility to go beyond the standard approximations like the thermal Hartree-Fock or the thermal RPA ones.Comment: 8 pages, Proceedings of the International Bogolyubov Conference "Problems of Theoretical and Mathematical Physics", August 23 -- 27, 2009, Dubna, Russi

    Visualization of wave function of quantum dot at fermi-edge singularity regime

    Get PDF
    We consider electron tunneling spectroscopy through an InAs quantum dot in a magnetic field applied perpendicular to the tunneling direction. We examine in details the anisotropic behavior of the amplitude and shape of the resonant peaks of I-V curves and concluded that (i) magnetotunneling spectroscopy at FES regime allows establishing position of resonant level in QD with high accuracy. (ii) The distinguishable shape of FES peak allows extracting the amplitude with much better accuracy. (iii) FES exponent dependence on magnetic field gives additional information about potential distribution outside QD.Foundation for Science and Technology (FCT

    Population of isomers in decay of the giant dipole resonance

    Full text link
    The value of an isomeric ratio (IR) in N=81 isotones (137^{137}Ba, 139^{139}Ce, 141^{141}Nd and 143^{143}Sm) is studied by means of the (γ,n)\gamma, n) reaction. This quantity measures a probability to populate the isomeric state in respect to the ground state population. In (γ,n)\gamma, n) reactions, the giant dipole resonance (GDR) is excited and after its decay by a neutron emission, the nucleus has an excitation energy of a few MeV. The forthcoming γ\gamma decay by direct or cascade transitions deexcites the nucleus into an isomeric or ground state. It has been observed experimentally that the IR for 137^{137}Ba and 139 ^{139}Ce equals about 0.13 while in two heavier isotones it is even less than half the size. To explain this effect, the structure of the excited states in the energy region up to 6.5 MeV has been calculated within the Quasiparticle Phonon Model. Many states are found connected to the ground and isomeric states by E1E1, E2E2 and M1M1 transitions. The single-particle component of the wave function is responsible for the large values of the transitions. The calculated value of the isomeric ratio is in very good agreement with the experimental data for all isotones. A slightly different value of maximum energy with which the nuclei rest after neutron decay of the GDR is responsible for the reported effect of the A-dependence of the IR.Comment: 16 pages, 4 Fig

    Spin splitting of X-related donor impurity states in an AlAs barrier

    Full text link
    We use magnetotunneling spectroscopy to observe the spin splitting of the ground state of an X-valley-related Si-donor impurity in an AlAs barrier. We determine the absolute magnitude of the effective Zeeman spin splitting factors of the impurity ground state to be gI_{I}= 2.2 ±\pm 0.1. We also investigate the spatial form of the electron wave function of the donor ground state, which is anisotropic in the growth plane
    corecore