12 research outputs found

    Some mass relations for mesons and baryons in Regge phenomenology

    Full text link
    In the quasilinear Regge trajectory ansatz, some useful linear mass inequalities, quadratic mass inequalities and quadratic mass equalities are derived for mesons and baryons. Based on these relations, mass ranges of some mesons and baryons are given. The masses of bc-bar and ss-bar belonging to the pseudoscalar, vector and tensor meson multiplets are also extracted. The J^P of the baryon Xi_cc(3520) is assigned to be 1/2^+. The numerical values for Regge slopes and intercepts of the 1/2^+ and 3/2^+ SU(4) baryon trajectories are extracted and the masses of the orbital excited baryons lying on the 1/2^+ and 3/2^+ trajectories are estimated. The J^P assignments of baryons Xi_c(2980), Xi_c(3055), Xi_c(3077) and Xi_c(3123) are discussed. The predictions are in reasonable agreement with the existing experimental data and those suggested in many other different approaches. The mass relations and the predictions may be useful for the discovery of the unobserved meson and baryon states and the J^P assignment of these states.Comment: 41 pages, 1 figure, Late

    Hadronic Regge Trajectories: Problems and Approaches

    Get PDF
    We scrutinized hadronic Regge trajectories in a framework of two different models --- string and potential. Our results are compared with broad spectrum of existing theoretical quark models and all experimental data from PDG98. It was recognized that Regge trajectories for mesons and baryons are not straight and parallel lines in general in the current resonance region both experimentally and theoretically, but very often have appreciable curvature, which is flavor-dependent. For a set of baryon Regge trajectories this fact is well described in the considered potential model. The standard string models predict linear trajectories at high angular momenta J with some form of nonlinearity at low J.Comment: 15 pages, 9 figures, LaTe

    Logarithmic perturbation theory for radial Klein-Gordon equation with screened Coulomb potentials via \hbar expansions

    Get PDF
    The explicit semiclassical treatment of logarithmic perturbation theory for the bound-state problem within the framework of the radial Klein-Gordon equation with attractive real-analytic screened Coulomb potentials, contained time-component of a Lorentz four-vector and a Lorentz-scalar term, is developed. Based upon \hbar-expansions and suitable quantization conditions a new procedure for deriving perturbation expansions is offered. Avoiding disadvantages of the standard approach, new handy recursion formulae with the same simple form both for ground and excited states have been obtained. As an example, the perturbation expansions for the energy eigenvalues for the Hulth\'en potential containing the vector part as well as the scalar component are considered.Comment: 14 pages, to be submitted to Journal of Physics

    Dual amplitude with Mandelstam analyticity

    No full text
    corecore