4,309 research outputs found

    Mott transitions in two-orbital Hubbard systems

    Full text link
    We investigate the Mott transitions in two-orbital Hubbard systems. Applying the dynamical mean field theory and the self-energy functional approach, we discuss the stability of itinerant quasi-particle states in each band. It is shown that separate Mott transitions occur at different Coulomb interaction strengths in general. On the other hand, if some special conditions are satisfied for the interactions, spin and orbital fluctuations are equally enhanced at low temperatures, resulting in a single Mott transition. The phase diagrams are obtained at zero and finite temperatures. We also address the effect of the hybridization between two orbitals, which induces the Kondo-like heavy fermion states in the intermediate orbital-selective Mott phase.Comment: 21 Pages, 17 Figures, to appear in Progress of Theoretical Physics (YKIS2004 Proceedings

    Renormalized Harmonic-Oscillator Description of Confined Electron Systems with Inverse-Square Interaction

    Full text link
    An integrable model for SU(ν\nu) electrons with inverse-square interaction is studied for the system with confining harmonic potential. We develop a new description of the spectrum based on the {\it renormalized harmonic-oscillators} which incorporate interaction effects via the repulsion of energy levels. This approach enables a systematic treatment of the excitation spectrum as well as the ground-state quantities.Comment: RevTex, 7 page

    Zero-temperature Phase Diagram of Two Dimensional Hubbard Model

    Full text link
    We investigate the two-dimensional Hubbard model on the triangular lattice with anisotropic hopping integrals at half filling. By means of a self-energy functional approach, we discuss how stable the non-magnetic state is against magnetically ordered states in the system. We present the zero-temperature phase diagram, where the normal metallic state competes with magnetically ordered states with (π,π)(\pi, \pi) and (2π/3,2π/3)(2\pi/3, 2\pi/3) structures. It is shown that a non-magnetic Mott insulating state is not realized as the ground state, in the present framework, but as a meta-stable state near the magnetically ordered phase with (2π/3,2π/3)(2\pi/3, 2\pi/3) structure.Comment: 4 pages, 4 figure

    Solutions to the Multi-Component 1/R Hubbard Model

    Full text link
    In this work we introduce one dimensional multi-component Hubbard model of 1/r hopping and U on-site energy. The wavefunctions, the spectrum and the thermodynamics are studied for this model in the strong interaction limit U=U=\infty. In this limit, the system is a special example of SU(N)SU(N) Luttinger liquids, exhibiting spin-charge separation in the full Hilbert space. Speculations on the physical properties of the model at finite on-site energy are also discussed.Comment: 9 pages, revtex, Princeton-May1

    Exact Drude weight for the one-dimensional Hubbard model at finite temperatures

    Full text link
    The Drude weight for the one-dimensional Hubbard model is investigated at finite temperatures by using the Bethe ansatz solution. Evaluating finite-size corrections to the thermodynamic Bethe ansatz equations, we obtain the formula for the Drude weight as the response of the system to an external gauge potential. We perform low-temperature expansions of the Drude weight in the case of half-filling as well as away from half-filling, which clearly distinguish the Mott-insulating state from the metallic state.Comment: 9 pages, RevTex, To appear in J. Phys.

    Critical exponents of a multicomponent anisotropic t-J model in one dimension

    Full text link
    A recently presented anisotropic generalization of the multicomponent supersymmetric tJt-J model in one dimension is investigated. This model of fermions with general spin-SS is solved by Bethe ansatz for the ground state and the low-lying excitations. Due to the anisotropy of the interaction the model possesses 2S2S massive modes and one single gapless excitation. The physical properties indicate the existence of Cooper-type multiplets of 2S+12S+1 fermions with finite binding energy. The critical behaviour is described by a c=1c=1 conformal field theory with continuously varying exponents depending on the particle density. There are two distinct regimes of the phase diagram with dominating density-density and multiplet-multiplet correlations, respectively. The effective mass of the charge carriers is calculated. In comparison to the limit of isotropic interactions the mass is strongly enhanced in general.Comment: 10 pages, 3 Postscript figures appended as uuencoded compressed tar-file to appear in Z. Phys. B, preprint Cologne-94-474

    Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi3_3 and CeIrSi3_3

    Full text link
    We study the normal and the superconducting properties in noncentrosymmetric heavy fermion superconductors CeRhSi3_3 and CeIrSi3_3. For the normal state, we show that experimentally observed linear temperature dependence of the resistivity is understood through the antiferromagnetic spin fluctuations near the quantum critical point (QCP) in three dimensions. For the superconducting state, we derive a general formula to calculate the upper critical field Hc2H_{c2}, with which we can treat the Pauli and the orbital depairing effect on an equal footing. The strong coupling effect for general electronic structures is also taken into account. We show that the experimentally observed features in Hc2z^H_{c2}\parallel \hat{z}, the huge value up to 30(T), the downward curvatures, and the strong pressure dependence, are naturally understood as an interplay of the Rashba spin-orbit interaction due to the lack of inversion symmetry and the spin fluctuations near the QCP. The large anisotropy between Hc2z^H_{c2}\parallel \hat{z} and Hc2z^H_{c2}\perp \hat{z} is explained in terms of the spin-orbit interaction. Furthermore, a possible realization of the Fulde-Ferrell- Larkin-Ovchinnikov state for Hz^H\perp \hat{z} is studied. We also examine effects of spin-flip scattering processes in the pairing interaction and those of the applied magnetic field on the spin fluctuations. We find that the above mentioned results are robust against these effects. The consistency of our results strongly supports the scenario that the superconductivity in CeRhSi3_3 and CeIrSi3_3 is mediated by the spin fluctuations near the QCP.Comment: 21pages, 13figures, to be published in Phys. Rev.

    Thermodynamics and Crossover Phenomena in the Correlation Lengths of the One-Dimensional t-J Model

    Full text link
    We investigate the thermodynamics of the one-dimensional t-J model using transfer matrix renormalization group (TMRG) algorithms and present results for quantities like particle number, specific heat, spin susceptibility and compressibility. Based on these results we confirm a phase diagram consisting of a Tomonaga-Luttinger liquid (TLL) phase for small J/t and a phase separated state for J/t large. Close to phase separation we find a spin-gap (Luther-Emery) phase at low densities consistent with predictions by other studies. At the supersymmetric point we compare our results with exact results from the Bethe ansatz and find excellent agreement. In particular we focus on the calculation of correlation lengths and static correlation functions and study the crossover from the non-universal high T lattice into the quantum critical regime. At the supersymmetric point we compare in detail with predictions by conformal field theory (CFT) and TLL theory and show the importance of logarithmic corrections.Comment: 14 pages, 20 figure

    A Note on Dressed S-Matrices in Models with Long-Range Interactions

    Full text link
    The {\sl dressed} Scattering matrix describing scattering of quasiparticles in various models with long-range interactions is evaluated by means of Korepin's method\upref vek1/. For models with 1sin2(r){1\over\sin^2(r)}-interactions the S-matrix is found to be a momentum-independent phase, which clearly demonstrates the ideal gas character of the quasiparticles in such models. We then determine S-matrices for some models with 1sinh2(r){1\over\sinh^2(r)}-interaction and find them to be in general nontrivial. For the 1r2{1\over r^2}-limit of the 1sinh2(r){1\over\sinh^2(r)}-interaction we recover trivial S-matrices, thus exhibiting a crossover from interacting to noninteracting quasiparticles. The relation of the S-matrix to fractional statistics is discussed.Comment: 18 pages, jyTeX (macro included - just TeX the file) BONN-TH-94-13, revised version: analysis of models with 1/sinh^2 interaction adde

    A Bjorken sum rule for semileptonic Ωb\Omega_b decays to ground and excited charmed baryon states

    Full text link
    We derive a Bjorken sum rule for semileptonic Ωb\Omega_b decays to ground and low-lying negative-parity excited charmed baryon states, in the heavy quark limit. We discuss the restriction from this sum rule on form factors and compare it with some models.Comment: 10 pages, RevTex, no figure, Alberta Thy--26--9
    corecore