26,627 research outputs found

    AC-Tolerant Multifilament Coated Conductors

    Full text link
    We report the magnetization losses in an experimental multifilament coated conductor. A 4 mm wide and 10 cm long YBCO coated conductor was subdivided into eight 0.5 mm wide filaments by laser ablation and subjected to post-ablation treatment. As the result, the hysteresis loss was reduced, as expected, in proportion to the width of the filaments. However, the coupling loss was reduced dramatically, and became practically negligible, in the range of a sweep rate up to 20 T/s. This represents a drastic improvement on previous multifilament conductors in which often the coupling losses became equal to the hysteresis loss at a sweep rate as low as 3-4 T/s. These results demonstrate that there is an effective and practical way to suppress coupling losses in coated multifilament conductors.Comment: This paper is based on a talk given at 2006 Applied Superconductivity Conference in Seattle, WA (August 27-September 1, 2006). To be published in IEEE Trans. Appl. Superconductivit

    Hadron Loops: General Theorems and Application to Charmonium

    Full text link
    In this paper we develop a formalism for incorporating hadron loops in the quark model. We derive expressions for mass shifts, continuum components and mixing amplitudes of "quenched" quark model states due to hadron loops, as perturbation series in the valence-continuum coupling Hamiltonian. We prove three general theorems regarding the effects of hadron loops, which show that given certain constraints on the external "bare" quark model states, the valence-continuum coupling, and the hadrons summed in the loops, the following results hold: (1) The loop mass shifts are identical for all states within a given N,L multiplet. (2) These states have the same total open-flavor decay widths. (3) Loop-induced valence configuration mixing vanishes provided that {\L}_i \neq \L_f or §i§f\S_i \neq \S_f. The charmonium system is used as a numerical case study, with the 30^3\P_0 decay model providing the valence-continuum coupling. We evaluate the mass shifts and continuum mixing numerically for all 1S, 1P and 2S charmonium valence states due to loops of D, D^*, Ds_s and Ds_s^* meson pairs. We find that the mass shifts are quite large, but are numerically similar for all the low-lying charmonium states, as suggested by the first theorem. Thus, loop mass shifts may have been "hidden" in the valence quark model by a change of parameters. The two-meson continuum components of the physical charmonium states are also found to be large, creating challenges for the interpretation of the constituent quark model.Comment: 10 pages, 1 ps figure. Typos corrected; discussion of psi-eta_c mass splitting added, published versio

    The Organizational Evolution of Markets for Wood Products in the Southern United States

    Get PDF
    This paper represents the first case study attempt to develop a transaction cost conceptual model to describe industry evolution of the paper and lumber industries in the Southern United States around the late 1800s and early 1900s. We use transaction cost theory to explain the co-evolution of markets for wood products noting that variation in the level and type of investments made in physical and human capital assets needed to manage paper and lumber miller operations had a significant influence on the use of wood dealer systems compared to more vertically organized business arrangements. We identify some testable hypotheses and areas of future research.Industry Evolution, Contracting, Property Rights, Vertical Integration, Forest Products, Industrial Organization, Research Methods/ Statistical Methods, L14, L24, L73, J24,

    On a q-analogue of the multiple gamma functions

    Full text link
    A qq-analogue of the multiple gamma functions is introduced, and is shown to satisfy the generalized Bohr-Morellup theorem. Furthermore we give some expressions of these function.Comment: 8 pages, AMS-Late

    Magnetization Losses in Multifilament Coated Superconductors

    Full text link
    We report the results of a study of the magnetization losses in experimental multifilament, as well as control (uniform), coated superconductors exposed to time-varying magnetic field of various frequencies. Both the hysteresis loss, proportional to the sweep rate of the applied magnetic field, and the coupling loss, proportional to the square of the sweep rate, have been observed. A scaling is found that allows us to quantify each of these contributions and extrapolate the results of the experiment beyond the envelope of accessible field amplitude and frequency. The combined loss in the multifilament conductor is reduced by about 90% in comparison with the uniform conductor at full field penetration at sweep rate as high as 3T/s

    Distinguishing Among Strong Decay Models

    Get PDF
    Two competing models for strong hadronic decays, the 3P0^3P_0 and 3S1^3S_1 models, are currently in use. Attempts to rule out one or the other have been hindered by a poor understanding of final state interactions and by ambiguities in the treatment of relativistic effects. In this article we study meson decays in both models, focussing on certain amplitude ratios for which the relativistic uncertainties largely cancel out (notably the S/DS/D ratios in b1πωb_1\rightarrow\pi\omega and a1πρa_1\rightarrow\pi\rho), and using a Quark Born Formalism to estimate the final state interactions. We find that the 3P0^3P_0 model is strongly favoured. In addition, we predict a P/FP/F amplitude ratio of 1.6±.21.6\pm .2 for the decay π2πρ\pi_2\rightarrow\pi\rho. We also study the parameter-dependence of some individual amplitudes (as opposed to amplitude ratios), in an attempt to identify a ``best'' version of the 3P0^3P_0 model.Comment: 20 pages, uuencoded postscript file with 7 figures, MIT-CTP-2295; CMU-HEP94-1

    Stability of atomic clocks based on entangled atoms

    Full text link
    We analyze the effect of realistic noise sources for an atomic clock consisting of a local oscillator that is actively locked to a spin-squeezed (entangled) ensemble of NN atoms. We show that the use of entangled states can lead to an improvement of the long-term stability of the clock when the measurement is limited by decoherence associated with instability of the local oscillator combined with fluctuations in the atomic ensemble's Bloch vector. Atomic states with a moderate degree of entanglement yield the maximal clock stability, resulting in an improvement that scales as N1/6N^{1/6} compared to the atomic shot noise level.Comment: 4 pages, 2 figures, revtex
    corecore