2,119 research outputs found
Perturbative quantization of two-dimensional space-time noncommutative QED
Using the method of perturbative quantization in the first order
approximation, we quantize a non-local QED-like theory including fermions and
bosons whose interactions are described by terms containing higher order
space-time derivatives. As an example, the two-dimensional space-time
noncommutative QED (NC-QED) is quantized perturbatively up to O(e^2,\theta^3),
where e is the NC-QED coupling constant and \theta is the noncommutativity
parameter. The resulting modified Lagrangian density is shown to include terms
consisting of first order time-derivative and higher order space-derivatives of
the modified field variables that satisfy the ordinary equal-time commutation
relations up to O(e^2,\theta^3. Using these commutation relations, the
canonical current algebra of the modified theory is also derived.Comment: 22 pages, no figure
A Note on Tachyon Moduli and Closed Strings
The collective behavior of the SL(2,R) covariant brane states of non-critical
c=1 string theory found in a previous work, is studied in the Fermi liquid
approximation. It is found that such states mimick the coset WZW model, whereas
only by further restrictions one recovers the double-scaling limit which was
purported to be equivalent to closed string models. Another limit is proposed,
inspired by the tachyon condensation ideas, where the spectrum is the same of
two-dimensional string theory. We close by noting some strange connections
between vacuum states of the theory in their different interpretations.Comment: PDFLaTeX, 17 pages, 2 figures; Section 2 rewritten, several fixes
throughout the text to improve clarit
Quantum fields near phantom-energy `sudden' singularities
This paper is committed to calculations near a type of future singularity
driven by phantom energy. At the singularities considered, the scale factor
remains finite but its derivative diverges. The general behavior of barotropic
phantom energy producing this singularity is calculated under the assumption
that near the singularity such fluid is the dominant contributor. We use the
semiclassical formula for renormalized stress tensors of conformally invariant
fields in conformally flat spacetimes and analyze the softening/enhancing of
the singularity due to quantum vacuum contributions. This dynamical analysis is
then compared to results from thermodynamical considerations. In both cases,
the vacuum states of quantized scalar and spinor fields strengthen the
accelerating expansion near the singularity whereas the vacuum states of vector
fields weaken it.Comment: 6 pages RevTe
First-order quantum correction to the Larmor radiation from a moving charge in a spatially homogeneous time-dependent electric field
First-order quantum correction to the Larmor radiation is investigated on the
basis of the scalar QED on a homogeneous background of time-dependent electric
field, which is a generalization of a recent work by Higuchi and Walker so as
to be extended for an accelerated charged particle in a relativistic motion. We
obtain a simple approximate formula for the quantum correction in the limit of
the relativistic motion when the direction of the particle motion is parallel
to that of the electric field.Comment: 12 pages, 2 figures, accepted for publication in Physical Review
Cosmology and the S-matrix
We study conditions for the existence of asymptotic observables in cosmology.
With the exception of de Sitter space, the thermal properties of accelerating
universes permit arbitrarily long observations, and guarantee the production of
accessible states of arbitrarily large entropy. This suggests that some
asymptotic observables may exist, despite the presence of an event horizon.
Comparison with decelerating universes shows surprising similarities: Neither
type suffers from the limitations encountered in de Sitter space, such as
thermalization and boundedness of entropy. However, we argue that no realistic
cosmology permits the global observations associated with an S-matrix.Comment: 16 pages, 5 figures; v2: minor editin
The Transition Amplitude for 2T Physics
We present the transition amplitude for a particle moving in a space with two
times and D space dimensions having a Sp(2,R) local symmetry and an SO(D,2)
rigid symmetry. It was obtained from the BRST-BFV quantization with a unique
gauge choice. We show that by constraining the initial and final points of this
amplitude to lie on some hypersurface of the D+2 space the resulting amplitude
reproduces well known systems in lower dimensions. This provides an alternative
physical interpretation for two times physics which is derived in a single
framework.Comment: 4 pages, typos corrected, references adde
Entanglement creation between two causally-disconnected objects
We study the full entanglement dynamics of two uniformly accelerated
Unruh-DeWitt detectors with no direct interaction in between but each coupled
to a common quantum field and moving back-to-back in the field vacuum. For two
detectors initially prepared in a separable state our exact results show that
quantum entanglement between the detectors can be created by the quantum field
under some specific circumstances, though each detector never enters the
other's light cone in this setup. In the weak coupling limit, this entanglement
creation can occur only if the initial moment is placed early enough and the
proper acceleration of the detectors is not too large or too small compared to
the natural frequency of the detectors. Once entanglement is created it lasts
only a finite duration, and always disappears at late times. Prior result by
Reznik derived using the time-dependent perturbation theory with extended
integration domain is shown to be a limiting case of our exact solutions at
some specific moment. In the strong coupling and high acceleration regime,
vacuum fluctuations experienced by each detector locally always dominate over
the cross correlations between the detectors, so entanglement between the
detectors will never be generated.Comment: 16 pages, 8 figures; added Ref.[7] and related discussion
Novel black hole bound states and entropy
We solve for the spectrum of the Laplacian as a Hamiltonian on
and in . A
self-adjointness analysis with and as
the boundary for the two cases shows that a general class of boundary
conditions for which the Hamiltonian operator is essentially self-adjoint are
of the mixed (Robin) type. With this class of boundary conditions we obtain
"bound state" solutions for the Schroedinger equation. Interestingly, these
solutions are all localized near the boundary. We further show that the number
of bound states is finite and is in fact proportional to the perimeter or area
of the removed \emph{disc} or \emph{ball}. We then argue that similar
considerations should hold for static black hole backgrounds with the horizon
treated as the boundary.Comment: 13 pages, 3 figures, approximate formula for energy spectrum added at
the end of section 2.1 along with additional minor changes to comply with the
version accepted in PR
How red is a quantum black hole?
Radiating black holes pose a number of puzzles for semiclassical and quantum
gravity. These include the transplanckian problem -- the nearly infinite
energies of Hawking particles created near the horizon, and the final state of
evaporation. A definitive resolution of these questions likely requires robust
inputs from quantum gravity. We argue that one such input is a quantum bound on
curvature. We show how this leads to an upper limit on the redshift of a
Hawking emitted particle, to a maximum temperature for a black hole, and to the
prediction of a Planck scale remnant.Comment: 3 pages, essay for the Gravity Research Foundatio
Quantum Corrections in Quintessence Models
We investigate the impact of quantum fluctuations on a light rolling
quintessence field from three different sources, namely, from a coupling to the
standard model and dark matter, from its self-couplings and from its coupling
to gravity. We derive bounds for time-varying masses from the change of vacuum
energy, finding \Delta m_e/m_e << 10^{-11} for the electron and \Delta m_p/m_p
<< 10^{-15} for the proton since redshift z~2, whereas the neutrino masses
could change of order one. Mass-varying dark matter is also constrained. Next,
the self-interactions are investigated. For inverse power law potentials, the
effective potential does not become infinitely large at small field values, but
saturates at a finite maximal value. We discuss implications for cosmology.
Finally, we show that one-loop corrections induce non-minimal gravitational
couplings involving arbitrarily high powers of the curvature scalar R,
indicating that quintessence entails modified gravity effects.Comment: 10 pages + appendix, added reference
- …
