24,208 research outputs found
Density-functionals not based on the electron gas: Local-density approximation for a Luttinger liquid
By shifting the reference system for the local-density approximation (LDA)
from the electron gas to other model systems one obtains a new class of density
functionals, which by design account for the correlations present in the chosen
reference system. This strategy is illustrated by constructing an explicit LDA
for the one-dimensional Hubbard model. While the traditional {\it ab initio}
LDA is based on a Fermi liquid (the electron gas), this one is based on a
Luttinger liquid. First applications to inhomogeneous Hubbard models, including
one containing a localized impurity, are reported.Comment: 4 pages, 4 figures (final version, contains additional applications
and discussion; accepted by Phys. Rev. Lett.
Experience with the Open Source based implementation for ATLAS Conditions Data Management System
Conditions Data in high energy physics experiments is frequently seen as
every data needed for reconstruction besides the event data itself. This
includes all sorts of slowly evolving data like detector alignment, calibration
and robustness, and data from detector control system. Also, every Conditions
Data Object is associated with a time interval of validity and a version.
Besides that, quite often is useful to tag collections of Conditions Data
Objects altogether. These issues have already been investigated and a data
model has been proposed and used for different implementations based in
commercial DBMSs, both at CERN and for the BaBar experiment. The special case
of the ATLAS complex trigger that requires online access to calibration and
alignment data poses new challenges that have to be met using a flexible and
customizable solution more in the line of Open Source components. Motivated by
the ATLAS challenges we have developed an alternative implementation, based in
an Open Source RDBMS. Several issues were investigated land will be described
in this paper:
-The best way to map the conditions data model into the relational database
concept considering what are foreseen as the most frequent queries.
-The clustering model best suited to address the scalability problem.
-Extensive tests were performed and will be described.
The very promising results from these tests are attracting the attention from
the HEP community and driving further developments.Comment: 8 pages, 4 figures, 3 tables, conferenc
Effect of particle polydispersity on the irreversible adsorption of fine particles on patterned substrates
We performed extensive Monte Carlo simulations of the irreversible adsorption
of polydispersed disks inside the cells of a patterned substrate. The model
captures relevant features of the irreversible adsorption of spherical
colloidal particles on patterned substrates. The pattern consists of (equal)
square cells, where adsorption can take place, centered at the vertices of a
square lattice. Two independent, dimensionless parameters are required to
control the geometry of the pattern, namely, the cell size and cell-cell
distance, measured in terms of the average particle diameter. However, to
describe the phase diagram, two additional dimensionless parameters, the
minimum and maximum particle radii are also required. We find that the
transition between any two adjacent regions of the phase diagram solely depends
on the largest and smallest particle sizes, but not on the shape of the
distribution function of the radii. We consider size dispersions up-to 20% of
the average radius using a physically motivated truncated Gaussian-size
distribution, and focus on the regime where adsorbing particles do not interact
with those previously adsorbed on neighboring cells to characterize the jammed
state structure. The study generalizes previous exact relations on monodisperse
particles to account for size dispersion. Due to the presence of the pattern,
the coverage shows a non-monotonic dependence on the cell size. The pattern
also affects the radius of adsorbed particles, where one observes preferential
adsorption of smaller radii particularly at high polydispersity.Comment: 9 pages, 5 figure
- …