3,334 research outputs found

    Self-Consistent Tensor Product Variational Approximation for 3D Classical Models

    Full text link
    We propose a numerical variational method for three-dimensional (3D) classical lattice models. We construct the variational state as a product of local tensors, and improve it by use of the corner transfer matrix renormalization group (CTMRG), which is a variant of the density matrix renormalization group (DMRG) applied to 2D classical systems. Numerical efficiency of this approximation is investigated through trial applications to the 3D Ising model and the 3D 3-state Potts model.Comment: 12 pages, 6 figure

    Phase Diagram of a 2D Vertex Model

    Full text link
    Phase diagram of a symmetric vertex model which allows 7 vertex configurations is obtained by use of the corner transfer matrix renormalization group (CTMRG), which is a variant of the density matrix renormalization group (DMRG). The critical indices of this model are identified as β=1/8\beta = 1/8 and α=0\alpha = 0.Comment: 2 pages, 5 figures, short not

    Application of the Density Matrix Renormalization Group Method to a Non-Equilibrium Problem

    Full text link
    We apply the density matrix renormalization group (DMRG) method to a non-equilibrium problem: the asymmetric exclusion process in one dimension. We study the stationary state of the process to calculate the particle density profile (one-point function). We show that, even with a small number of retained bases, the DMRG calculation is in excellent agreement with the exact solution obtained by the matrix-product-ansatz approach.Comment: 8 pages, LaTeX (using jpsj.sty), 4 non-embedded figures, submitted to J. Phys. Soc. Jp

    The Density Matrix Renormalization Group technique with periodic boundary conditions

    Full text link
    The Density Matrix Renormalization Group (DMRG) method with periodic boundary conditions is introduced for two dimensional classical spin models. It is shown that this method is more suitable for derivation of the properties of infinite 2D systems than the DMRG with open boundary conditions despite the latter describes much better strips of finite width. For calculation at criticality, phenomenological renormalization at finite strips is used together with a criterion for optimum strip width for a given order of approximation. For this width the critical temperature of 2D Ising model is estimated with seven-digit accuracy for not too large order of approximation. Similar precision is reached for critical indices. These results exceed the accuracy of similar calculations for DMRG with open boundary conditions by several orders of magnitude.Comment: REVTeX format contains 8 pages and 6 figures, submitted to Phys. Rev.

    Incommensurate structures studied by a modified Density Matrix Renormalization Group Method

    Full text link
    A modified density matrix renormalization group (DMRG) method is introduced and applied to classical two-dimensional models: the anisotropic triangular nearest- neighbor Ising (ATNNI) model and the anisotropic triangular next-nearest-neighbor Ising (ANNNI) model. Phase diagrams of both models have complex structures and exhibit incommensurate phases. It was found that the incommensurate phase completely separates the disordered phase from one of the commensurate phases, i. e. the non-existence of the Lifshitz point in phase diagrams of both models was confirmed.Comment: 14 pages, 14 figures included in text, LaTeX2e, submitted to PRB, presented at MECO'24 1999 (Wittenberg, Germany
    • …
    corecore