43,027 research outputs found

    Superfluidity of Λ\Lambda hyperons in neutron stars

    Full text link
    We study the 1S0^1S_0 superfluidity of Λ\Lambda hyperons in neutron star matter and neutron stars. We use the relativistic mean field (RMF) theory to calculate the properties of neutron star matter. In the RMF approach, the meson-hyperon couplings are constrained by reasonable hyperon potentials that include the updated information from recent developments in hypernuclear physics. To examine the 1S0^1S_0 pairing gap of Λ\Lambda hyperons, we employ several ΛΛ\Lambda\Lambda interactions based on the Nijmegen models and used in double-Λ\Lambda hypernuclei studies. It is found that the maximal pairing gap obtained is a few tenths of a MeV. The magnitude and the density region of the pairing gap are dependent on the ΛΛ\Lambda\Lambda interaction and the treatment of neutron star matter. We calculate neutron star properties and find that whether the 1S0^1S_0 superfluidity of Λ\Lambda hyperons exists in the core of neutron stars mainly depends on the ΛΛ\Lambda\Lambda interaction used.Comment: 22 pages, 2 Tables, 6 Figur

    Anomalous high energy dispersion in photoemission spectra from insulating cuprates

    Full text link
    Angle resolved photoelectron spectroscopic measurements have been performed on an insulating cuprate Ca_2CuO_2Cl_2. High resolution data taken along the \Gamma to (pi,pi) cut show an additional dispersive feature that merges with the known dispersion of the lowest binding energy feature, which follows the usual strongly renormalized dispersion of ~0.35 eV. This higher energy part reveals a dispersion that is very close to the unrenormalized band predicted by band theory. A transfer of spectral weight from the low energy feature to the high energy feature is observed as the \Gamma point is approached. By comparing with theoretical calculations the high energy feature observed here demonstrates that the incoherent portion of the spectral function has significant structure in momentum space due to the presence of various energy scales.Comment: 5 pages, 3 figure

    On Algorithmic Statistics for space-bounded algorithms

    Full text link
    Algorithmic statistics studies explanations of observed data that are good in the algorithmic sense: an explanation should be simple i.e. should have small Kolmogorov complexity and capture all the algorithmically discoverable regularities in the data. However this idea can not be used in practice because Kolmogorov complexity is not computable. In this paper we develop algorithmic statistics using space-bounded Kolmogorov complexity. We prove an analogue of one of the main result of `classic' algorithmic statistics (about the connection between optimality and randomness deficiences). The main tool of our proof is the Nisan-Wigderson generator.Comment: accepted to CSR 2017 conferenc

    Possible ΔΔ\Delta\Delta dibaryons in the quark cluster model

    Full text link
    In the framework of RGM, the binding energy of one channel ΔΔ(3,0)\Delta\Delta_{(3,0)}(dd^*) and ΔΔ(0,3)\Delta\Delta_{(0,3)} are studied in the chiral SU(3) quark cluster model. It is shown that the binding energies of the systems are a few tens of MeV. The behavior of the chiral field is also investigated by comparing the results with those in the SU(2) and the extended SU(2) chiral quark models. It is found that the symmetry property of the ΔΔ\Delta\Delta system makes the contribution of the relative kinetic energy operator between two clusters attractive. This is very beneficial for forming the bound dibaryon. Meanwhile the chiral-quark field coupling also plays a very important role on binding. The S-wave phase shifts and the corresponding scattering lengths of the systems are also given.Comment: LeTex with 2 ps figure

    Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Ba(Fe1xCox)2As2Ba(Fe_{1-x}Co_x)_2As_2 (x = 0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap superconductivity. These gaps decrease with increasing temperature and vanish above the superconducting transition TcT_c. The two-gap nature and the slightly doping- and energy-dependent quasiparticle scattering interferences near the wave-vectors (±π,0)(\pm \pi, 0) and (0,±π)(0, \pm \pi) are consistent with sign-changing ss-wave superconductivity. The excess zero-bias conductance and the large gap-to-TcT_c ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review Letters. Contact author: Nai-Chang Yeh ([email protected]

    Effect of stoichiometry on oxygen incorporation in MgB2 thin films

    Full text link
    The amount of oxygen incorporated into MgB2 thin films upon exposure to atmospheric gasses is found to depend strongly on the material's stoichiometry. Rutherford backscattering spectroscopy was used to monitor changes in oxygen incorporation resulting from exposure to: (a) ambient atmosphere, (b) humid atmospheres, (c) anneals in air and (d) anneals in oxygen. The study investigated thin-film samples with compositions that were systematically varied from Mg0.9B2 to Mg1.1B2. A significant surface oxygen contamination was observed in all of these films. The oxygen content in the bulk of the film, on the other hand, increased significantly only in Mg rich films and in films exposed to humid atmospheres.Comment: 10 pages, 6 figures, 1 tabl

    Microcystic cyanobacteria causes mitochondrial membrane potential alteration and reactive oxygen species formation in primary cultured rat hepatocytes.

    Get PDF
    Cyanobacteria contamination of water has become a growing public health problem worldwide. Microcystis aeruginosa is one of the most common toxic cyanobacteria. It is capable of producing microcystins, a group of cyclic heptapeptide compounds with potent hepatotoxicity and tumor promotion activity. The present study investigated the effect of microcystic cyanobacteria on primary cultured rat hepatocytes by examining mitochondrial membrane potential (MMP) changes and intracellular reactive oxygen species (ROS) formation in cells treated with lyophilized freshwater microcystic cyanobacteria extract (MCE). Rhodamine 123 (Rh-123) was used as a fluorescent probe for changes in mitochondrial fluorescence intensity. The mitochondrial Rh-123 fluorescence intensity in MCE-treated hepatocytes, examined using a laser confocal microscope, responded in a dose- and time-dependent manner. The results thus indicate that the alteration of MMP might be an important event in the hepatotoxicity caused by cyanobacteria. Moreover, the parallel increase of ROS formation detected using another fluorescent probe, 2',7'-dichlorofluorescin diacetate also suggests the involvement of oxidative stress in the hepatotoxicity caused by cyanobacteria. The fact that MMP changes precede other cytotoxic parameters such as nuclear staining by propidium iodide and cell morphological changes suggests that mitochondrial damage is closely associated with MCE-induced cell injury in cultured rat hepatocytes
    corecore