2,103 research outputs found

    On Simulating Liouvillian Flow From Quantum Mechanics Via Wigner Functions

    Get PDF
    The interconnection between quantum mechanics and probabilistic classical mechanics for a free relativistic particle is derived in terms of Wigner functions (WF) for both Dirac and Klein-Gordon (K-G) equations. Construction of WF is achieved by first defining a bilocal 4-current and then taking its Fourier transform w.r.t. the relative 4-coordinate. The K-G and Proca cases also lend themselves to a closely parallel treatment provided the Kemmer- Duffin beta-matrix formalism is employed for the former. Calculation of WF is carried out in a Lorentz-covariant fashion by standard `trace' techniques. The results are compared with a recent derivation due to Bosanac.Comment: 9 pages, Latex; email: [email protected]

    Melting of hexagonal skyrmion states in chiral magnets

    Get PDF
    Skyrmions are spiral structures observed in thin films of certain magnetic materials (Uchida et al 2006 Science 311 359–61). Of the phases allowed by the crystalline symmetries of these materials (Yi et al 2009 Phys. Rev. B 80 054416), only the hexagonally packed phases (SCh) have been observed. Here the melting of the SCh phase is investigated using Monte Carlo simulations. In addition to the usual measure of skyrmion density, chiral charge, a morphological measure is considered. In doing so it is shown that the low-temperature reduction in chiral charge is associated with a change in skyrmion profiles rather than skyrmion destruction. At higher temperatures, the loss of six-fold symmetry is associated with the appearance of elongated skyrmions that disrupt the hexagonal packing

    Yes-go cross-couplings in collections of tensor fields with mixed symmetries of the type (3,1) and (2,2)

    Full text link
    Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincare invariance of the deformations, combined with the requirement that the interaction vertices contain at most two space-time derivatives of the fields, we investigate the consistent cross-couplings between two collections of tensor fields with the mixed symmetries of the type (3,1) and (2,2). The computations are done with the help of the deformation theory based on a cohomological approach in the context of the antifield-BRST formalism. Our results can be synthesized in: 1. there appear consistent cross-couplings between the two types of field collections at order one and two in the coupling constant such that some of the gauge generators and of the reducibility functions are deformed, and 2. the existence or not of cross-couplings among different fields with the mixed symmetry of the Riemann tensor depends on the indefinite or respectively positive-definite behaviour of the quadratic form defined by the kinetic terms from the free Lagrangian.Comment: 35 page

    Masses of the physical mesons from an effective QCD--Hamiltonian

    Get PDF
    The front form Hamiltonian for quantum chromodynamics, reduced to an effective Hamiltonian acting only in the qqˉq\bar q space, is solved approximately. After coordinate transformation to usual momentum space and Fourier transformation to configuration space a second order differential equation is derived. This retarded Schr\"odinger equation is solved by variational methods and semi-analytical expressions for the masses of all 30 pseudoscalar and vector mesons are derived. In view of the direct relation to quantum chromdynamics without free parameter, the agreement with experiment is remarkable, but the approximation scheme is not adequate for the mesons with one up or down quark. The crucial point is the use of a running coupling constant αs(Q2)\alpha_s(Q^2), in a manner similar but not equal to the one of Richardson in the equal usual-time quantization. Its value is fixed at the Z mass and the 5 flavor quark masses are determined by a fit to the vector meson quarkonia.Comment: 18 pages, 4 Postscript figure

    Compactification in the Lightlike Limit

    Full text link
    We study field theories in the limit that a compactified dimension becomes lightlike. In almost all cases the amplitudes at each order of perturbation theory diverge in the limit, due to strong interactions among the longitudinal zero modes. The lightlike limit generally exists nonperturbatively, but is more complicated than might have been assumed. Some implications for the matrix theory conjecture are discussed.Comment: 13 pages, 3 epsf figures. References and brief comments added. Nonexistent divergent graph in 0+- model delete

    No multi-graviton theories in the presence of a Dirac field

    Full text link
    The cross-couplings among several massless spin-two fields (described in the free limit by a sum of Pauli-Fierz actions) in the presence of a Dirac field are investigated in the framework of the deformation theory based on local BRST cohomology. Under the hypotheses of locality, smoothness of the interactions in the coupling constant, Poincare invariance, (background) Lorentz invariance and the preservation of the number of derivatives on each field, we prove that there are no consistent cross-interactions among different gravitons in the presence of a Dirac field. The basic features of the couplings between a single Pauli-Fierz field and a Dirac field are also emphasized.Comment: 48 page

    Model for SU(3) vacuum degeneracy using light-cone coordinates

    Get PDF
    Working in light-cone coordinates, we study the zero-modes and the vacuum in a 2+1 dimensional SU(3) gauge model. Considering the fields as independent of the tranverse variables, we dimensionally reduce this model to 1+1 dimensions. After introducing an appropriate su(3) basis and gauge conditions, we extract an adjoint field from the model. Quantization of this adjoint field and field equations lead to two constrained and two dynamical zero-modes. We link the dynamical zero-modes to the vacuum by writing down a Schrodinger equation and prove the non-degeneracy of the SU(3) vacuum provided that we neglect the contribution of constrained zero-modes.Comment: 22 pages, 5 figure

    Neutrino flavour relaxation or neutrino oscillations?

    Full text link
    We propose the new mechanism of neutrino flavour relaxation to explain the experimentally observed changes of initial neutrino flavour fluxes. The test of neutrino relaxation hypothesis is presented, using the data of modern reactor, solar and accelerator experiments. The final choice between the standard neutrino oscillations and the proposed neutrino flavour relaxation model can be done in future experiments

    On Zero Modes and the Vacuum Problem -- A Study of Scalar Adjoint Matter in Two-Dimensional Yang-Mills Theory via Light-Cone Quantisation

    Get PDF
    SU(2) Yang-Mills Theory coupled to massive adjoint scalar matter is studied in (1+1) dimensions using Discretised Light-Cone Quantisation. This theory can be obtained from pure Yang-Mills in 2+1 dimensions via dimensional reduction. On the light-cone, the vacuum structure of this theory is encoded in the dynamical zero mode of a gluon and a constrained mode of the scalar field. The latter satisfies a linear constraint, suggesting no nontrivial vacua in the present paradigm for symmetry breaking on the light-cone. I develop a diagrammatic method to solve the constraint equation. In the adiabatic approximation I compute the quantum mechanical potential governing the dynamical gauge mode. Due to a condensation of the lowest omentum modes of the dynamical gluons, a centrifugal barrier is generated in the adiabatic potential. In the present theory however, the barrier height appears too small to make any impact in this odel. Although the theory is superrenormalisable on naive powercounting grounds, the removal of ultraviolet divergences is nontrivial when the constrained mode is taken into account. The open aspects of this problem are discussed in detail.Comment: LaTeX file, 26 pages. 14 postscript figure

    Compactification near and on the light front

    Get PDF
    We address problems associated with compactification near and on the light front. In perturbative scalar field theory we illustrate and clarify the relationships among three approaches: (1) quantization on a space-like surface close to a light front; (2) infinite momentum frame calculations; and (3) quantization on the light front. Our examples emphasize the difference between zero modes in space-like quantization and those in light front quantization. In particular, in perturbative calculations of scalar field theory using discretized light cone quantization there are well-known ``zero-mode induced'' interaction terms. However, we show that they decouple in the continuum limit and covariant answers are reproduced. Thus compactification of a light-like surface is feasible and defines a consistent field theory.Comment: 24 pages, 4 figure
    • …
    corecore