1,608 research outputs found

    Development of metal adaptation in a tropical marine zooplankton

    Get PDF

    Securing MIMO Wiretap Channel with Learning-Based Friendly Jamming under Imperfect CSI

    Full text link
    Wireless communications are particularly vulnerable to eavesdropping attacks due to their broadcast nature. To effectively deal with eavesdroppers, existing security techniques usually require accurate channel state information (CSI), e.g., for friendly jamming (FJ), and/or additional computing resources at transceivers, e.g., cryptography-based solutions, which unfortunately may not be feasible in practice. This challenge is even more acute in low-end IoT devices. We thus introduce a novel deep learning-based FJ framework that can effectively defeat eavesdropping attacks with imperfect CSI and even without CSI of legitimate channels. In particular, we first develop an autoencoder-based communication architecture with FJ, namely AEFJ, to jointly maximize the secrecy rate and minimize the block error rate at the receiver without requiring perfect CSI of the legitimate channels. In addition, to deal with the case without CSI, we leverage the mutual information neural estimation (MINE) concept and design a MINE-based FJ scheme that can achieve comparable security performance to the conventional FJ methods that require perfect CSI. Extensive simulations in a multiple-input multiple-output (MIMO) system demonstrate that our proposed solution can effectively deal with eavesdropping attacks in various settings. Moreover, the proposed framework can seamlessly integrate MIMO security and detection tasks into a unified end-to-end learning process. This integrated approach can significantly maximize the throughput and minimize the block error rate, offering a good solution for enhancing communication security in wireless communication systems.Comment: 12 pages, 15 figure

    Network-Aided Intelligent Traffic Steering in 6G O-RAN: A Multi-Layer Optimization Framework

    Full text link
    To enable an intelligent, programmable and multi-vendor radio access network (RAN) for 6G networks, considerable efforts have been made in standardization and development of open RAN (O-RAN). So far, however, the applicability of O-RAN in controlling and optimizing RAN functions has not been widely investigated. In this paper, we jointly optimize the flow-split distribution, congestion control and scheduling (JFCS) to enable an intelligent traffic steering application in O-RAN. Combining tools from network utility maximization and stochastic optimization, we introduce a multi-layer optimization framework that provides fast convergence, long-term utility-optimality and significant delay reduction compared to the state-of-the-art and baseline RAN approaches. Our main contributions are three-fold: i) we propose the novel JFCS framework to efficiently and adaptively direct traffic to appropriate radio units; ii) we develop low-complexity algorithms based on the reinforcement learning, inner approximation and bisection search methods to effectively solve the JFCS problem in different time scales; and iii) the rigorous theoretical performance results are analyzed to show that there exists a scaling factor to improve the tradeoff between delay and utility-optimization. Collectively, the insights in this work will open the door towards fully automated networks with enhanced control and flexibility. Numerical results are provided to demonstrate the effectiveness of the proposed algorithms in terms of the convergence rate, long-term utility-optimality and delay reduction.Comment: 15 pages, 10 figures. A short version will be submitted to IEEE GLOBECOM 202

    Machine Learning-Enabled Joint Antenna Selection and Precoding Design: From Offline Complexity to Online Performance

    Get PDF
    We investigate the performance of multi-user multiple-antenna downlink systems in which a BS serves multiple users via a shared wireless medium. In order to fully exploit the spatial diversity while minimizing the passive energy consumed by radio frequency (RF) components, the BS is equipped with M RF chains and N antennas, where M < N. Upon receiving pilot sequences to obtain the channel state information, the BS determines the best subset of M antennas for serving the users. We propose a joint antenna selection and precoding design (JASPD) algorithm to maximize the system sum rate subject to a transmit power constraint and QoS requirements. The JASPD overcomes the non-convexity of the formulated problem via a doubly iterative algorithm, in which an inner loop successively optimizes the precoding vectors, followed by an outer loop that tries all valid antenna subsets. Although approaching the (near) global optimality, the JASPD suffers from a combinatorial complexity, which may limit its application in real-time network operations. To overcome this limitation, we propose a learning-based antenna selection and precoding design algorithm (L-ASPA), which employs a DNN to establish underlaying relations between the key system parameters and the selected antennas. The proposed L-ASPD is robust against the number of users and their locations, BS's transmit power, as well as the small-scale channel fading. With a well-trained learning model, it is shown that the L-ASPD significantly outperforms baseline schemes based on the block diagonalization and a learning-assisted solution for broadcasting systems and achieves higher effective sum rate than that of the JASPA under limited processing time. In addition, we observed that the proposed L-ASPD can reduce the computation complexity by 95% while retaining more than 95% of the optimal performance.Comment: accepted to the IEEE Transactions on Wireless Communication
    corecore