10 research outputs found
Instanton Calculus of Lifshitz Tails
For noninteracting particles moving in a Gaussian random potential, there
exists a disagreement in the literature on the asymptotic expression for the
density of states in the tail of the band. We resolve this discrepancy. Further
we illuminate the physical facet of instantons appearing in replica and
supersymmetric derivations with another derivation employing a Lagrange
multiplier field.Comment: 5 page
Adventures in Holographic Dimer Models
We abstract the essential features of holographic dimer models, and develop
several new applications of these models. First, semi-holographically coupling
free band fermions to holographic dimers, we uncover novel phase transitions
between conventional Fermi liquids and non-Fermi liquids, accompanied by a
change in the structure of the Fermi surface. Second, we make dimer vibrations
propagate through the whole crystal by way of double trace deformations,
obtaining nontrivial band structure. In a simple toy model, the topology of the
band structure experiences an interesting reorganization as we vary the
strength of the double trace deformations. Finally, we develop tools that would
allow one to build, in a bottom-up fashion, a holographic avatar of the Hubbard
model.Comment: 22 pages, 8 figures; v2: brief description of case of pure D5 lattice
added in sec.3; v3: minor typo fixed; v4: minor change
Strange metals and the AdS/CFT correspondence
I begin with a review of quantum impurity models in condensed matter physics,
in which a localized spin degree of freedom is coupled to an interacting
conformal field theory in d = 2 spatial dimensions. Their properties are
similar to those of supersymmetric generalizations which can be solved by the
AdS/CFT correspondence; the low energy limit of the latter models is described
by a AdS2 geometry. Then I turn to Kondo lattice models, which can be described
by a mean- field theory obtained by a mapping to a quantum impurity coupled to
a self-consistent environment. Such a theory yields a 'fractionalized Fermi
liquid' phase of conduction electrons coupled to a critical spin liquid state,
and is an attractive mean-field theory of strange metals. The recent
holographic description of strange metals with a AdS2 x R2 geometry is argued
to be related to such mean-field solutions of Kondo lattice models.Comment: 19 pages, 4 figures; Plenary talk at Statphys24, Cairns, Australia,
July 2010; (v2) added refs; (v3) more ref
Strongly Correlated Quantum Fluids: Ultracold Quantum Gases, Quantum Chromodynamic Plasmas, and Holographic Duality
Strongly correlated quantum fluids are phases of matter that are
intrinsically quantum mechanical, and that do not have a simple description in
terms of weakly interacting quasi-particles. Two systems that have recently
attracted a great deal of interest are the quark-gluon plasma, a plasma of
strongly interacting quarks and gluons produced in relativistic heavy ion
collisions, and ultracold atomic Fermi gases, very dilute clouds of atomic
gases confined in optical or magnetic traps. These systems differ by more than
20 orders of magnitude in temperature, but they were shown to exhibit very
similar hydrodynamic flow. In particular, both fluids exhibit a robustly low
shear viscosity to entropy density ratio which is characteristic of quantum
fluids described by holographic duality, a mapping from strongly correlated
quantum field theories to weakly curved higher dimensional classical gravity.
This review explores the connection between these fields, and it also serves as
an introduction to the Focus Issue of New Journal of Physics on Strongly
Correlated Quantum Fluids: from Ultracold Quantum Gases to QCD Plasmas. The
presentation is made accessible to the general physics reader and includes
discussions of the latest research developments in all three areas.Comment: 138 pages, 25 figures, review associated with New Journal of Physics
special issue "Focus on Strongly Correlated Quantum Fluids: from Ultracold
Quantum Gases to QCD Plasmas"
(http://iopscience.iop.org/1367-2630/focus/Focus%20on%20Strongly%20Correlated%20Quantum%20Fluids%20-%20from%20Ultracold%20Quantum%20Gases%20to%20QCD%20Plasmas