135 research outputs found

    Optical response of small silver clusters

    Get PDF
    The time-dependent local density approximation is applied to the optical response of the silver clusters, Ag_2, Ag_3, Ag_8 and Ag_9^+. The calculation includes all the electrons beyond the closed-shell Ag^{+11} ionic core, thus including for the first time explicitly the filled d-shell in the response. The excitation energy of the strong surface plasmon near 4 eV agrees well with experiment. The theoretical transition strength is quenched by a factor of 4 with respect to the pure s-electron sum rule in Ag_8 due to the d-electrons. A comparable amount of strength lies in complex states below 6 eV excitation. The total below 6 eV, about 50% of the s sum rule, is consistent with published experiments.Comment: 13 pages RevTex and 9 Postscript figure

    Moment distributiuons of clusters and molecules in the adiabatic rotor model

    Full text link
    We present a Fortran program to compute the distribution of dipole moments of free particles for use in analyzing molecular beams experiments that measure moments by deflection in an inhomogeneous field. The theory is the same for magnetic and electric dipole moments, and is based on a thermal ensemble of classical particles that are free to rotate and that have moment vectors aligned along a principal axis of rotation. The theory has two parameters, the ratio of the magnetic (or electric) dipole energy to the thermal energy, and the ratio of moments of inertia of the rotor.Comment: 3 pages with 2 figure

    A real-space, rela-time method for the dielectric function

    Full text link
    We present an algorithm to calculate the linear response of periodic systems in the time-dependent density functional thoery, using a real-space representation of the electron wave functions and calculating the dynamics in real time. The real-space formulation increases the efficiency for calculating the interaction, and the real-time treatment decreases storage requirements and the allows the entire frequency-dependent response to be calculated at once. We give as examples the dielectric functions of a simple metal, lithium, and an elemental insulator, diamond.Comment: 17 pages, Latex, 5 figure

    Cluster ionization via two-plasmon excitation

    Get PDF
    We calculate the two-photon ionization of clusters for photon energies near the surface plasmon resonance. The results are expressed in terms of the ionization rate of a double plasmon excitation, which is calculated perturbatively. For the conditions of the experiment by Schlipper et al., we find an ionization rate of the order of 0.05-0.10 fs^(-1). This rate is used to determine the ionization probability in an external field in terms of the number of photons absorbed and the duration of the field. The probability also depends on the damping rate of the surface plasmon. Agreement with experiment can only be achieved if the plasmon damping is considerably smaller than its observed width in the room-temperature single-photon absorption spectrum.Comment: 17 pages and 6 PostScript figure

    Oscillator strengths with pseudopotentials

    Full text link
    The time-dependent local-density approximation (TDLDA) is shown to remain accurate in describing the atomic response of IB elements under the additional approximation of using pseudopotentials to treat the effects of core electrons. This extends the work of Zangwill and Soven who showed the utility of the all-electron TDLDA in the atomic response problem.Comment: 13 pages including 3 Postscript figure

    Self-consistent calculation of nuclear photoabsorption cross section: Finite amplitude method with Skyrme functionals in the three-dimensional real space

    Full text link
    The finite amplitude method (FAM), which we have recently proposed (T. Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76, 024318 (2007)), simplifies significantly the fully self-consistent RPA calculation. Employing the FAM, we are conducting systematic, fully self-consistent response calculations for a wide mass region. This paper is intended to present a computational scheme to be used in the systematic investigation and to show the performance of the FAM for a realistic Skyrme energy functional. We implemented the method in the mixed representation in which the forward and backward RPA amplitudes are represented by indices of single-particle orbitals for occupied states and the spatial grid points for unoccupied states. We solve the linear response equation for a given frequency. The equation is a linear algebraic problem with a sparse non-hermitian matrix, which is solved with an iterative method. We show results of the dipole response for selected spherical and deformed nuclei. The peak energies of the giant dipole resonance agree well with measurements for heavy nuclei, while they are systematically underestimated for light nuclei. We also discuss the width of the giant dipole resonance in the fully self-consistent RPA calculation.Comment: 11 pages, 10 figure

    Application of Absorbing Boundary Condition to Nuclear Breakup Reactions

    Full text link
    Absorbing boundary condition approach to nuclear breakup reactions is investigated. A key ingredient of the method is an absorbing potential outside the physical area, which simulates the outgoing boundary condition for scattered waves. After discretizing the radial variables, the problem results in a linear algebraic equation with a sparse coefficient matrix, to which efficient iterative methods can be applicable. No virtual state such as discretized continuum channel needs to be introduced in the method. Basic aspects of the method are discussed by considering a nuclear two-body scattering problem described with an optical potential. We then apply the method to the breakup reactions of deuterons described in a three-body direct reaction model. Results employing the absorbing boundary condition are found to accurately coincide with those of the existing method which utilizes discretized continuum channels.Comment: 21 pages, 5 figures, RevTeX

    Application of time-dependent density functional theory to optical activity

    Get PDF
    As part of a general study of the time-dependent local density approximation (TDLDA), we here report calculations of optical activity of chiral molecules. The theory automatically satisfies sum rules and the Kramers-Kronig relation between circular dichroism and optical rotatory power. We find that the theory describes the measured circular dichroism of the lowest states in methyloxirane with an accuracy of about a factor of two. In the chiral fullerene C_76 the TDLDA provides a consistent description of the optical absorption spectrum, the circular dichroism spectrum, and the optical rotatory power, except for an overall shift of the theoretical spectrum.Comment: 17 pages and 13 PostScript figure

    Vibrations and Berry Phases of Charged Buckminsterfullerene

    Full text link
    A simple model of electron-vibron interactions in buckminsterfullerene ions is solved semiclassically. Electronic degeneracies of C60_{60}n^{n-} induce dynamical Jahn-Teller distortions, which are unimodal for n ⁣ ⁣3n\!\ne\!3 and bimodal for n ⁣= ⁣3n\!=\!3. The quantization of motion along the Jahn-Teller manifold leads to a symmetric-top rotator Hamiltonian. I find Molecular Aharonov-Bohm effects where electronic Berry phases determine the vibrational spectra, zero point fluctuations, and electrons' pair binding energies. The latter are relevant to superconductivity in alkali-fullerenes.Comment: Latex 11 pages. IIT-00

    Effect of continuum couplings in fusion of halo 11^{11}Be on 208^{208}Pb around the Coulomb barrier

    Get PDF
    The effect of continuum couplings in the fusion of the halo nucleus 11^{11}Be on 208^{208}Pb around the Coulomb barrier is studied using a three-body model within a coupled discretised continuum channels (CDCC) formalism. We investigate in particular the role of continuum-continuum couplings. These are found to hinder total, complete and incomplete fusion processes. Couplings to the projectile 1p1/21p_{1/2} bound excited state redistribute the complete and incomplete fusion cross sections, but the total fusion cross section remains nearly constant. Results show that continuum-continuum couplings enhance the irreversibility of breakup and reduce the flux that penetrates the Coulomb barrier. Converged total fusion cross sections agree with the experimental ones for energies around the Coulomb barrier, but underestimate those for energies well above the Coulomb barrier.Comment: 15 pages, 7 figures, accepted in Phys. Rev.
    corecore