135 research outputs found
Optical response of small silver clusters
The time-dependent local density approximation is applied to the optical
response of the silver clusters, Ag_2, Ag_3, Ag_8 and Ag_9^+. The calculation
includes all the electrons beyond the closed-shell Ag^{+11} ionic core, thus
including for the first time explicitly the filled d-shell in the response. The
excitation energy of the strong surface plasmon near 4 eV agrees well with
experiment. The theoretical transition strength is quenched by a factor of 4
with respect to the pure s-electron sum rule in Ag_8 due to the d-electrons. A
comparable amount of strength lies in complex states below 6 eV excitation. The
total below 6 eV, about 50% of the s sum rule, is consistent with published
experiments.Comment: 13 pages RevTex and 9 Postscript figure
Moment distributiuons of clusters and molecules in the adiabatic rotor model
We present a Fortran program to compute the distribution of dipole moments of
free particles for use in analyzing molecular beams experiments that measure
moments by deflection in an inhomogeneous field. The theory is the same for
magnetic and electric dipole moments, and is based on a thermal ensemble of
classical particles that are free to rotate and that have moment vectors
aligned along a principal axis of rotation. The theory has two parameters, the
ratio of the magnetic (or electric) dipole energy to the thermal energy, and
the ratio of moments of inertia of the rotor.Comment: 3 pages with 2 figure
A real-space, rela-time method for the dielectric function
We present an algorithm to calculate the linear response of periodic systems
in the time-dependent density functional thoery, using a real-space
representation of the electron wave functions and calculating the dynamics in
real time. The real-space formulation increases the efficiency for calculating
the interaction, and the real-time treatment decreases storage requirements and
the allows the entire frequency-dependent response to be calculated at once. We
give as examples the dielectric functions of a simple metal, lithium, and an
elemental insulator, diamond.Comment: 17 pages, Latex, 5 figure
Cluster ionization via two-plasmon excitation
We calculate the two-photon ionization of clusters for photon energies near
the surface plasmon resonance. The results are expressed in terms of the
ionization rate of a double plasmon excitation, which is calculated
perturbatively. For the conditions of the experiment by Schlipper et al., we
find an ionization rate of the order of 0.05-0.10 fs^(-1). This rate is used to
determine the ionization probability in an external field in terms of the
number of photons absorbed and the duration of the field. The probability also
depends on the damping rate of the surface plasmon. Agreement with experiment
can only be achieved if the plasmon damping is considerably smaller than its
observed width in the room-temperature single-photon absorption spectrum.Comment: 17 pages and 6 PostScript figure
Oscillator strengths with pseudopotentials
The time-dependent local-density approximation (TDLDA) is shown to remain
accurate in describing the atomic response of IB elements under the additional
approximation of using pseudopotentials to treat the effects of core electrons.
This extends the work of Zangwill and Soven who showed the utility of the
all-electron TDLDA in the atomic response problem.Comment: 13 pages including 3 Postscript figure
Self-consistent calculation of nuclear photoabsorption cross section: Finite amplitude method with Skyrme functionals in the three-dimensional real space
The finite amplitude method (FAM), which we have recently proposed (T.
Nakatsukasa, T. Inakura, and K. Yabana, Phys. Rev. C 76, 024318 (2007)),
simplifies significantly the fully self-consistent RPA calculation. Employing
the FAM, we are conducting systematic, fully self-consistent response
calculations for a wide mass region. This paper is intended to present a
computational scheme to be used in the systematic investigation and to show the
performance of the FAM for a realistic Skyrme energy functional. We implemented
the method in the mixed representation in which the forward and backward RPA
amplitudes are represented by indices of single-particle orbitals for occupied
states and the spatial grid points for unoccupied states. We solve the linear
response equation for a given frequency. The equation is a linear algebraic
problem with a sparse non-hermitian matrix, which is solved with an iterative
method. We show results of the dipole response for selected spherical and
deformed nuclei. The peak energies of the giant dipole resonance agree well
with measurements for heavy nuclei, while they are systematically
underestimated for light nuclei. We also discuss the width of the giant dipole
resonance in the fully self-consistent RPA calculation.Comment: 11 pages, 10 figure
Application of Absorbing Boundary Condition to Nuclear Breakup Reactions
Absorbing boundary condition approach to nuclear breakup reactions is
investigated. A key ingredient of the method is an absorbing potential outside
the physical area, which simulates the outgoing boundary condition for
scattered waves. After discretizing the radial variables, the problem results
in a linear algebraic equation with a sparse coefficient matrix, to which
efficient iterative methods can be applicable. No virtual state such as
discretized continuum channel needs to be introduced in the method. Basic
aspects of the method are discussed by considering a nuclear two-body
scattering problem described with an optical potential. We then apply the
method to the breakup reactions of deuterons described in a three-body direct
reaction model. Results employing the absorbing boundary condition are found to
accurately coincide with those of the existing method which utilizes
discretized continuum channels.Comment: 21 pages, 5 figures, RevTeX
Application of time-dependent density functional theory to optical activity
As part of a general study of the time-dependent local density approximation
(TDLDA), we here report calculations of optical activity of chiral molecules.
The theory automatically satisfies sum rules and the Kramers-Kronig relation
between circular dichroism and optical rotatory power. We find that the theory
describes the measured circular dichroism of the lowest states in methyloxirane
with an accuracy of about a factor of two. In the chiral fullerene C_76 the
TDLDA provides a consistent description of the optical absorption spectrum, the
circular dichroism spectrum, and the optical rotatory power, except for an
overall shift of the theoretical spectrum.Comment: 17 pages and 13 PostScript figure
Vibrations and Berry Phases of Charged Buckminsterfullerene
A simple model of electron-vibron interactions in buckminsterfullerene ions
is solved semiclassically. Electronic degeneracies of C induce
dynamical Jahn-Teller distortions, which are unimodal for and
bimodal for . The quantization of motion along the Jahn-Teller
manifold leads to a symmetric-top rotator Hamiltonian. I find Molecular
Aharonov-Bohm effects where electronic Berry phases determine the vibrational
spectra, zero point fluctuations, and electrons' pair binding energies. The
latter are relevant to superconductivity in alkali-fullerenes.Comment: Latex 11 pages. IIT-00
Effect of continuum couplings in fusion of halo Be on Pb around the Coulomb barrier
The effect of continuum couplings in the fusion of the halo nucleus Be
on Pb around the Coulomb barrier is studied using a three-body model
within a coupled discretised continuum channels (CDCC) formalism. We
investigate in particular the role of continuum-continuum couplings. These are
found to hinder total, complete and incomplete fusion processes. Couplings to
the projectile bound excited state redistribute the complete and
incomplete fusion cross sections, but the total fusion cross section remains
nearly constant. Results show that continuum-continuum couplings enhance the
irreversibility of breakup and reduce the flux that penetrates the Coulomb
barrier. Converged total fusion cross sections agree with the experimental ones
for energies around the Coulomb barrier, but underestimate those for energies
well above the Coulomb barrier.Comment: 15 pages, 7 figures, accepted in Phys. Rev.
- …