6 research outputs found

    Genomics of alkaliphiles

    Get PDF
    Alkalinicity presents a challenge for life due to a “reversed” proton gradient that is unfavourable to many bioenergetic processes across the membranes of microorganisms. Despite this, many bacteria, archaea, and eukaryotes, collectively termed alkaliphiles, are adapted to life in alkaline ecosystems and are of great scientific and biotechnological interest due to their niche specialization and ability to produce highly stable enzymes. Advances in next-generation sequencing technologies have propelled not only the genomic characterization of many alkaliphilic microorganisms that have been isolated from nature alkaline sources but also our understanding of the functional relationships between different taxa in microbial communities living in these ecosystems. In this review, we discuss the genetics and molecular biology of alkaliphiles from an “omics” point of view, focusing on how metagenomics and transcriptomics have contributed to our understanding of these extremophiles.https://link.springer.com/bookseries/10hj2021BiochemistryGeneticsMicrobiology and Plant Patholog

    Transcriptome Analysis of Gossypium hirsutum L. Reveals Different Mechanisms among NaCl, NaOH and Na2CO3 Stress Tolerance

    No full text
    Abstract As an important source of fiber and edible oil, cotton has great economic value. In comparison to their individual studies, association and differentiation between salt and alkaline tolerance has not been focused yet by scientists. We have used next-generation RNA-Seq technique to analyze transcriptional changes under salt and alkaline stresses in cotton. Overall, 25,929 and 6,564 differentially expressed genes (DEGs) were identified in roots and leaves, respectively. Gene functional annotation showed that genes involving ionic homeostasis were significantly up-regulated under NaCl stress and Na2CO3 stress, and genes enriched in starch and sucrose metabolism were up-regulated under NaOH stress and Na2CO3 stress. Furthermore, a synergistic enhancing effect between NaCl and NaOH stress was also observed in this study. Likewise, our studies indicate further that genes related with starch and sucrose metabolism were regulated to respond to the high pH under Na2CO3 stress, inducing plant hormone signal transduction and key enzyme reactive oxygen species (ROS) activity to respond to ionic toxicity and intracellular ionic homeostasis. By analyzing the expression profiles of diverse tissues under different salt and alkaline stresses, this study provides valuable ideas for genetic improvements of cotton tolerance to salt-alkaline stress

    Signal Perception and Mechanism of Salt Toxicity/Tolerance in Photosynthetic Organisms: Cyanobacteria to Plants

    No full text
    corecore