491 research outputs found

    Parity, age at first childbirth and the prognosis of primary breast cancer.

    Get PDF
    Reproductive factors are known to be aetiologically important in breast cancer, but less is known regarding their effect on breast cancer prognosis. We have investigated the prognostic effect of age at first birth and total parity using data from the Danish Breast Cancer Cooperative Group that, since 1977, has collected population-based information on tumour characteristics, treatment regimes and follow-up status on Danish women with breast cancer. Details of pregnancy history were added from the Danish Civil Registration System and the National Birth Registry. Included in the study were 10,703 women with primary breast cancer. After adjusting for age and stage of disease (tumour size, axillary nodal status and histological grading), the number of full-term pregnancies was found without prognostic value. However, women with primary childbirth between 20 and 29 years experienced a significantly reduced risk of death compared with women with primary childbirth below the age of 20 years [20-24 years: relative risk (RR) = 0.88, 95% confidence interval (CI) 0.78-0.99; 25-29 years: RR = 0.80, 95% CI 0.70-0.91]. Further adjustment for oestrogen receptor status did not influence these results. The effect was not modified by age at diagnosis, tumour size or nodal status. In conclusion, low age at first childbirth, but not parity, was associated with a poor prognosis of breast cancer. We speculate whether women who develop breast cancer despite an early first full-term pregnancy might represent a selected group with a more malignant disease

    Dielectric Susceptibility and Heat Capacity of Ultra-Cold Glasses in Magnetic Field

    Full text link
    Recent experiments demonstrated unexpected, even intriguing properties of certain glassy materials in magnetic field at low temperatures. We have studied the magnetic field dependence of the static dielectric susceptibility and the heat capacity of glasses at low temperatures. We present a theory in which we consider the coupling of the tunnelling motion to nuclear quadrupoles in order to evaluate the static dielectric susceptibility. In the limit of weak magnetic field we find the resonant part of the susceptibility increasing like B2B^2 while for the large magnetic field it behaves as 1/B. In the same manner we consider the coupling of the tunnelling motion to nuclear quadrupoles and angular momentum of tunnelling particles in order to find the heat capacity. Our results show the Schotky peak for the angular momentum part, and B2B^2 dependence for nuclear quadrupoles part of heat capacity, respectively. We discuss whether or not this approach can provide a suitable explanation for such magnetic properties.Comment: 10 pages, 1 figur

    Mean square displacement and reorientational correlation function in entangled polymer melts revealed by field cycling 1H and 2H NMR relaxometry

    Get PDF
    Mixtures of protonated and deuterated polybutadiene and polydimethylsiloxane are studied by means of field-cycling (FC) 1H NMR relaxometry in order to analyze the intra- and intermolecular contributions to spin-lattice relaxation. They reflect reorientational and translational dynamics,respectively. Master curves in the susceptibility representation π″(ωτ s) are constructed by employing frequency-temperature superposition with τ s denoting the segmental correlation time. The intermolecular contribution is dominating at low frequencies and allows extracting the segmental mean square displacement 〈R 2(t)〉, which reveals two power-law regimes. The one at short times agrees with t 0.5 predicted for the free Rouse regime and at long times a lower exponent is observed in fair agreement with t 0.25 expected for the constrained Rouse regime of the tube-reptation model. Concomitantly the reorientational rank-two correlation function C 2(t/τ s) is obtained from the intramolecular part. Again two power-law regimes t -ε are identified for polybutadiene. The first agrees with t -1 of free Rouse dynamics whereas at long times ε = 0.49 is obtained. The latter is corroborated by the 2H relaxation of deuterated polybutadiene, yet, it does not agree with ε = 0.25 predicted for constrained Rouse dynamics. Thus, the relation C 2(t) ∝ 〈R 2(t)〉 -1 as assumed by the tube-reptation model is not confirmed. © 2012 American Chemical Society

    Ecosystem transpiration and evaporation: Insights from three water flux partitioning methods across FLUXNET sites

    Get PDF
    We apply and compare three widely applicable methods for estimating ecosystem transpiration (T) from eddy covariance (EC) data across 251 FLUXNET sites globally. All three methods are based on the coupled water and carbon relationship, but they differ in assumptions and parameterizations. Intercomparison of the three daily T estimates shows high correlation among methods (R between .89 and .94), but a spread in magnitudes of T/ET (evapotranspiration) from 45% to 77%. When compared at six sites with concurrent EC and sap flow measurements, all three EC‐based T estimates show higher correlation to sap flow‐based T than EC‐based ET. The partitioning methods show expected tendencies of T/ET increasing with dryness (vapor pressure deficit and days since rain) and with leaf area index (LAI). Analysis of 140 sites with high‐quality estimates for at least two continuous years shows that T/ET variability was 1.6 times higher across sites than across years. Spatial variability of T/ET was primarily driven by vegetation and soil characteristics (e.g., crop or grass designation, minimum annual LAI, soil coarse fragment volume) rather than climatic variables such as mean/standard deviation of temperature or precipitation. Overall, T and T/ET patterns are plausible and qualitatively consistent among the different water flux partitioning methods implying a significant advance made for estimating and understanding T globally, while the magnitudes remain uncertain. Our results represent the first extensive EC data‐based estimates of ecosystem T permitting a data‐driven perspective on the role of plants’ water use for global water and carbon cycling in a changing climate.We acknowledge insightful discussions with Dario Papale and apologize for having a cappuccino after lunch. We further acknowledge Ulrich Weber for preparing the cappuccino. M.G. acknowledges funding by Swiss National Science Foundation project ICOS‐CH Phase 2 20FI20_173691. L.Š. was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the CzeCOS program, grant number LM2015061, and by SustES‐Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions (CZ.02.1.01/0.0/0.0/16_019/0000797). G.W. acknowledges support by the Austrian National Science Fund (FWF, project I03859) and the Province of South Tyrol (“Cycling of carbon and water in mountain ecosystems under changing climate and land use”). R.P. was supported by grants CGL2014‐55883‐JIN, RTI2018‐095297‐J‐I00 (Spain), and by a Humboldt Research Fellowship for Experienced Researchers (Germany). This work used eddy covariance data acquired and shared by the FLUXNET community, including these networks: Ameri‐Flux, AfriFlux, AsiaFlux, CarboAfrica, CarboEuropeIP, CarboItaly, CarboMont, ChinaFlux, Fluxnet‐Canada, GreenGrass, ICOS, KoFlux, LBA, NECC, OzFlux‐TERN, TCOS‐Siberia, and USCCC. The ERA‐Interim reanalysis data are provided by ECMWF and processed by LSCE. The FLUXNET eddy covariance data processing and harmonization was carried out by the European Fluxes Database Cluster, AmeriFlux Management Project, and Fluxdata project of FLUXNET, with the support of CDIAC and ICOS Ecosystem Thematic Center, and the OzFlux, ChinaFlux, and AsiaFlux offices. Open access funding enabled and organized by Projekt DEAL

    Effect of reproductive factors on stage, grade and hormone receptor status in early-onset breast cancer

    Get PDF
    INTRODUCTION: Women younger than 35 years who are diagnosed with breast cancer tend to have more advanced stage tumors and poorer prognoses than do older women. Pregnancy is associated with elevated exposure to estrogen, which may influence the progression of breast cancer in young women. The objective of the present study was to examine the relationship between reproductive events and tumor stage, grade, estrogen receptor and progesterone receptor status, and survival in women diagnosed with early-onset breast cancer. METHODS: In a population-based, case–case study of 254 women diagnosed with invasive breast cancer at age under 35 years, odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using unconditional logistic regression with tumor characteristics as dependent variables and adjusting for age and education. Survival analyses also examined the relationship between reproductive events and overall survival. RESULTS: Compared with nulliparous women, women with three or more childbirths were more likely to be diagnosed with nonlocalized tumors (OR = 3.1, 95% CI = 1.3–7.7), and early age (<20 years) at first full-term pregnancy was also associated with a diagnosis of breast cancer that was nonlocalized (OR = 3.0, 95% CI = 1.2–7.4) and of higher grade (OR = 3.2, 95% CI 1.0–9.9). The hazard ratio for death among women with two or more full-term pregnancies, as compared with those with one full-term pregnancy or none, was 2.1 (95% CI = 1.0–4.5), adjusting for stage. Among parous women, those who lactated were at decreased risk for both estrogen receptor and progesterone receptor negative tumors (OR = 0.2, 95% CI = 0.1–0.5, and OR = 0.4, 95% CI = 0.2–0.8, respectively). CONCLUSION: The results of the present study suggest that pregnancy and lactation may influence tumor presentation and survival in women with early-onset breast cancer

    Leaf photosynthesis and respiration of three bioenergy crops in relation to temperature and leaf nitrogen: how conserved are biochemical model parameters among crop species?

    Get PDF
    Given the need for parallel increases in food and energy production from crops in the context of global change, crop simulation models and data sets to feed these models with photosynthesis and respiration parameters are increasingly important. This study provides information on photosynthesis and respiration for three energy crops (sunflower, kenaf, and cynara), reviews relevant information for five other crops (wheat, barley, cotton, tobacco, and grape), and assesses how conserved photosynthesis parameters are among crops. Using large data sets and optimization techniques, the C3 leaf photosynthesis model of Farquhar, von Caemmerer, and Berry (FvCB) and an empirical night respiration model for tested energy crops accounting for effects of temperature and leaf nitrogen were parameterized. Instead of the common approach of using information on net photosynthesis response to CO2 at the stomatal cavity (An–Ci), the model was parameterized by analysing the photosynthesis response to incident light intensity (An–Iinc). Convincing evidence is provided that the maximum Rubisco carboxylation rate or the maximum electron transport rate was very similar whether derived from An–Ci or from An–Iinc data sets. Parameters characterizing Rubisco limitation, electron transport limitation, the degree to which light inhibits leaf respiration, night respiration, and the minimum leaf nitrogen required for photosynthesis were then determined. Model predictions were validated against independent sets. Only a few FvCB parameters were conserved among crop species, thus species-specific FvCB model parameters are needed for crop modelling. Therefore, information from readily available but underexplored An–Iinc data should be re-analysed, thereby expanding the potential of combining classical photosynthetic data and the biochemical model
    corecore