12 research outputs found

    Supramolecularly directed rotary motion in a photoresponsive receptor

    Get PDF
    Stimuli-controlled motion at the molecular level has fascinated chemists already for several decades. Taking inspiration from the myriad of dynamic and machine-like functions in nature, a number of strategies have been developed to control motion in purely synthetic systems. Unidirectional rotary motion, such as is observed in ATP synthase and other motor proteins, remains highly challenging to achieve. Current artificial molecular motor systems rely on intrinsic asymmetry or a specific sequence of chemical transformations. Here, we present an alternative design in which the rotation is directed by a chiral guest molecule, which is able to bind non-covalently to a light-responsive receptor. It is demonstrated that the rotary direction is governed by the guest chirality and hence, can be selected and changed at will. This feature offers unique control of directional rotation and will prove highly important in the further development of molecular machinery

    SUMO regulates p21Cip1 intracellular distribution and with p21Cip1 facilitates multiprotein complex formation in the nucleolus upon DNA damage

    Get PDF
    We previously showed that p21Cip1 transits through the nucleolus on its way from the nucleus to the cytoplasm and that DNA damage inhibits this transit and induces the formation of p21Cip1-containing intranucleolar bodies (INoBs). Here, we demonstrate that these INoBs also contain SUMO-1 and UBC9, the E2 SUMO-conjugating enzyme. Furthermore, whereas wild type SUMO-1 localized in INoBs, a SUMO-1 mutant, which is unable to conjugate with proteins, does not, suggesting the presence of SUMOylated proteins at INoBs. Moreover, depletion of the SUMO-conjugating enzyme UBC9 or the sumo hydrolase SENP2 changed p21Cip1 intracellular distribution. In addition to SUMO-1 and p21Cip1, cell cycle regulators and DNA damage checkpoint proteins, including Cdk2, Cyclin E, PCNA, p53 and Mdm2, and PML were also detected in INoBs. Importantly, depletion of UBC9 or p21Cip1 impacted INoB biogenesis and the nucleolar accumulation of the cell cycle regulators and DNA damage checkpoint proteins following DNA damage. The impact of p21Cip1 and SUMO-1 on the accumulation of proteins in INoBs extends also to CRM1, a nuclear exportin that is also important for protein translocation from the cytoplasm to the nucleolus. Thus, SUMO and p21Cip1 regulate the transit of proteins through the nucleolus, and that disruption of nucleolar export by DNA damage induces SUMO and p21Cip1 to act as hub proteins to form a multiprotein complex in the nucleolus

    Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53

    Get PDF
    BACKGROUND: Primary radiotherapy (RT) is a mainstay of treatment for laryngeal squamous cell carcinoma (LSCC). Although the cure rates for early (T1) vocal cord tumours are high, RT proves ineffective in up to a third of T3 carcinomas. Moreover, RT is associated with debilitating early- and late-treatment-related toxicity, thus finding means to de-escalate therapy, while retaining/augmenting therapeutic effectiveness, is highly desirable. p53 is a key mediator of radiation responses; we therefore investigated whether Nutlin-3, a small-molecule inhibitor of MDM2 (mouse double minute 2; an essential negative regulator of p53), might radiosensitise LSCC cells. METHODS: We performed clonogenic assays to measure radiosensitivity in a panel of LSCC cell lines (for which we determined p53 mutational status) in the presence and absence of Nutlin-3. RESULTS: LSCC cells harbouring wild-type p53 were significantly radiosensitised by Nutlin-3 (P<0.0001; log-rank scale), and displayed increased cell cycle arrest and significantly increased senescence (P<0.001) in the absence of increased apoptosis; thus, our data suggest that senescence may mediate this increased radiosensitivity. CONCLUSION: This is the first study showing Nutlin-3 as an effective radiosensitiser in LSCC cells that retain wild-type p53. The clinical application of Nutlin-3 might improve local recurrence rates or allow treatment de-escalation in these patients

    Heterogeneous exchange of precipitates

    No full text
    corecore