58 research outputs found

    Eutrophication problems, causes and potential solutions, and exchange of reusable model building components for the integrated simulation of coastal eutrophication. ISECA Final Report D3.2

    Get PDF
    This report summarizes the stages of coastal and offshore eutrophication, followed by a description of the European indicators and institutional framework for marine eutrophication assessment. A summary is given of a number of biogeochemical models available to describe the process of eutrophication in the North Sea, and the model for atmospheric inputs which was developed in the ISECA project (see the Action 3 Report – Atmospheric Modelling for more details on this work). Furthermore, the report compares different solutions aimed at reducing the nitrogen inputs from the Scheldt basin, using the nitrogen apportionment model which was developed in the EU-FP6 project SPICOSA (www.spicosa.eu). The report is concluded with a discussion on the principles of component-based modelling and model libraries, using examples for the Scheldt model, and a general discussion on some challenges of modelling marine eutrophication

    Whole breast and regional nodal irradiation in prone versus supine position in left sided breast cancer

    Get PDF
    Background: Prone whole breast irradiation (WBI) leads to reduced heart and lung doses in breast cancer patients receiving adjuvant radiotherapy. In this feasibility trial, we investigated the prone position for whole breast + lymph node irradiation (WB + LNI). Methods: A new support device was developed for optimal target coverage, on which patients are positioned in a position resembling a phase from the crawl swimming technique (prone crawl position). Five left sided breast cancer patients were included and simulated in supine and prone position. For each patient, a treatment plan was made in prone and supine position for WB + LNI to the whole axilla and the unoperated part of the axilla. Patients served as their own controls for comparing dosimetry of target volumes and organs at risk (OAR) in prone versus in supine position. Results: Target volume coverage differed only slightly between prone and supine position. Doses were significantly reduced (P < 0.05) in prone position for ipsilateral lung (Dmean, D2, V5, V10, V20, V30), contralateral lung (Dmean, D2), contralateral breast (Dmean, D2 and for total axillary WB + LNI also V5), thyroid (Dmean, D2, V5, V10, V20, V30), oesophagus (Dmean and for partial axillary WB + LNI also D2 and V5), skin (D2 and for partial axillary WB + LNI V105 and V107). There were no significant differences for heart and humeral head doses. Conclusions: Prone crawl position in WB + LNI allows for good breast and nodal target coverage with better sparing of ipsilateral lung, thyroid, contralateral breast, contralateral lung and oesophagus when compared to supine position. There is no difference in heart and humeral head doses

    Optimal Cerebral Perfusion Pressure During Delayed Cerebral Ischemia After Aneurysmal Subarachnoid Hemorrhage

    Get PDF
    OBJECTIVES: The recommendation of induced hypertension for delayed cerebral ischemia treatment after aneurysmal subarachnoid hemorrhage has been challenged recently and ideal pressure targets are missing. A new concept advocates an individual cerebral perfusion pressure where cerebral autoregulation functions best to ensure optimal global perfusion. We characterized optimal cerebral perfusion pressure at time of delayed cerebral ischemia and tested the conformity of induced hypertension with this target value. DESIGN: Retrospective analysis of prospectively collected data. SETTING: University hospital neurocritical care unit. PATIENTS: Thirty-nine aneurysmal subarachnoid hemorrhage patients with invasive neuromonitoring (20 with delayed cerebral ischemia, 19 without delayed cerebral ischemia). INTERVENTIONS: Induced hypertension greater than 180 mm Hg systolic blood pressure. MEASUREMENTS AND MAIN RESULTS: Changepoint analysis was used to calculate significant changes in cerebral perfusion pressure, optimal cerebral perfusion pressure, and the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure 48 hours before delayed cerebral ischemia diagnosis. Optimal cerebral perfusion pressure increased 30 hours before the onset of delayed cerebral ischemia from 82.8 +/- 12.5 to 86.3 +/- 11.4 mm Hg (p < 0.05). Three hours before delayed cerebral ischemia, a changepoint was also found in the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure (decrease from -0.2 +/- 11.2 to -7.7 +/- 7.6 mm Hg; p < 0.05) with a corresponding increase in pressure reactivity index (0.09 +/- 0.33 to 0.19 +/- 0.37; p < 0.05). Cerebral perfusion pressure at time of delayed cerebral ischemia was lower than in patients without delayed cerebral ischemia in a comparable time frame (cerebral perfusion pressure delayed cerebral ischemia 81.4 +/- 8.3 mm Hg, no delayed cerebral ischemia 90.4 +/- 10.5 mm Hg; p < 0.05). Inducing hypertension resulted in a cerebral perfusion pressure above optimal cerebral perfusion pressure (+12.4 +/- 8.3 mm Hg; p < 0.0001). Treatment response (improvement of delayed cerebral ischemia: induced hypertension(+) [n = 15] or progression of delayed cerebral ischemia: induced hypertension(-) [n = 5]) did not correlate to either absolute values of cerebral perfusion pressure or optimal cerebral perfusion pressure, nor the resulting difference (cerebral perfusion pressure [p = 0.69]; optimal cerebral perfusion pressure [p = 0.97]; and the difference of cerebral perfusion pressure and optimal cerebral perfusion pressure [p = 0.51]). CONCLUSIONS: At the time of delayed cerebral ischemia occurrence, there is a significant discrepancy between cerebral perfusion pressure and optimal cerebral perfusion pressure with worsening of autoregulation, implying inadequate but identifiable individual perfusion. Standardized induction of hypertension resulted in cerebral perfusion pressures that exceeded individual optimal cerebral perfusion pressure in delayed cerebral ischemia patients. The potential benefit of individual blood pressure management guided by autoregulation-based optimal cerebral perfusion pressure should be explored in future intervention studies

    Intensity modulated radiotherapy (IMRT) in the treatment of children and Adolescents - a single institution's experience and a review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT) in children and adolescents in the context of the current literature.</p> <p>Methods</p> <p>Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5) were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients), followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each). In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed.</p> <p>Results</p> <p>With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed.</p> <p>Conclusion</p> <p>IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure.</p
    • …
    corecore