1,273 research outputs found

    Dynamics of matter-wave and optical fields in superradiant scattering from Bose-Einstein condensates

    Full text link
    We study superradiant scattering off Bose-Einstein condensates by solving the semiclassical Maxwell-Schroedinger equations describing the coupled dynamics of matter-wave and optical fields. Taking the spatial dependence of these fields along the condensate axis into account, we are able to reproduce and explain many of the characteristic features observed in the experiments of Inouye et al. [Science 285, 571 (1999)] and Schneble et al. [Science 300, 475 (2003)], such as the shape of the atomic side-mode distributions for forward and backward scattering, the spatial asymmetry between forward and backward side modes, and the depletion of the condensate center observed for forward scattering.Comment: 4 pages, 2 figure

    A possibility for precise Weinberg angle measurement in centrosymmetric crystals with axis

    Full text link
    We demonstrate that parity nonconserving interaction due to the nuclear weak charge Q_W leads to nonlinear magnetoelectric effect in centrosymmetric paramagnetic crystals. It is shown that the effect exists only in crystals with special symmetry axis k. Kinematically, the correlation (correction to energy) has the form H_PNC ~ Q_W (E,[B,k])(B,k), where B and E are the external magnetic and electric fields. This gives rise to magnetic induction M_PNC ~ Q_W {k(B,[k,E]) + [k,E](B,k)}. To be specific we consider rare-earth trifluorides and, in particular, dysprosium trifluoride which looks the most suitable for experiment. We estimate the optimal temperature for the experiment to be of a few kelvin. For the magnetic field B = 1 T and the electric field E = 10 kV/cm, the expected magnetic induction is 4 \pi M_PNC = 0.5 * 10^-11 G, six orders of magnitude larger than the best sensitivity currently under discussion. Dysprosium has several stable isotopes, and so, comparison of the effects for different isotopes provides possibility for precise measurement of the Weinberg angle.Comment: 7 pages, 1 figure, 2 tables; version 2 - added discussion of neutron distribution uncertaint

    Leading infrared logarithms for sigma-model with fields on arbitrary Riemann manifold

    Full text link
    We derive non-linear recursion equation for the leading infrared logarithms (LL) in four dimensional sigma-model with fields on an arbitrary Riemann manifold. The derived equation allows one to compute leading infrared logarithms to essentially unlimited loop order in terms of geometric characteristics of the Riemann manifold. We reduce the solution of the SU(oo) principal chiral field in arbitrary number of dimensions in the LL approximation to the solution of very simple recursive equation. This result paves a way to the solution of the model in arbitrary number of dimensions at N-->ooComment: Talk given by MVP at the conference devoted to memory of A.N. Vasilie

    Coherent interaction of laser pulses in a resonant optically dense extended medium under the regime of strong field-matter coupling

    Full text link
    Nonstationary pump-probe interaction between short laser pulses propagating in a resonant optically dense coherent medium is considered. A special attention is paid to the case, where the density of two-level particles is high enough that a considerable part of the energy of relatively weak external laser-fields can be coherently absorbed and reemitted by the medium. Thus, the field of medium reaction plays a key role in the interaction processes, which leads to the collective behavior of an atomic ensemble in the strongly coupled light-matter system. Such behavior results in the fast excitation interchanges between the field and a medium in the form of the optical ringing, which is analogous to polariton beating in the solid-state optics. This collective oscillating response, which can be treated as successive beats between light wave-packets of different group velocities, is shown to significantly affect propagation and amplification of the probe field under its nonlinear interaction with a nearly copropagating pump pulse. Depending on the probe-pump time delay, the probe transmission spectra show the appearance of either specific doublet or coherent dip. The widths of these features are determined by the density-dependent field-matter coupling coefficient and increase during the propagation. Besides that, the widths of the coherent features, which appear close to the resonance in the broadband probe-spectrum, exceed the absorption-line width, since, under the strong-coupling regime, the frequency of the optical ringing exceeds the rate of incoherent relaxation. Contrary to the stationary strong-field effects, the density- and coordinate-dependent transmission spectra of the probe manifest the importance of the collective oscillations and cannot be obtained in the framework of the single-atom model.Comment: 10 pages, 8 figures, to be published in Phys. Rev.

    Spatial effects in superradiant Rayleigh scattering from Bose-Einstein condensates

    Full text link
    We present a detailed theoretical analysis of superradiant Rayleigh scattering from atomic Bose-Einstein condensates. A thorough investigation of the spatially resolved time-evolution of optical and matter-wave fields is performed in the framework of the semiclassical Maxwell-Schroedinger equations. Our theory is not only able to explain many of the known experimental observations, e.g., the behavior of the atomic side-mode distributions, but also provides further detailed insights into the coupled dynamics of optical and matter-wave fields. To work out the significance of propagation effects, we compare our results to other theoretical models in which these effects are neglected.Comment: 14 pages, 13 figure

    Self-consistent theory of turbulence

    Full text link
    A new approach to the stochastic theory of turbulence is suggested. The coloured noise that is present in the stochastic Navier-Stokes equation is generated from the delta-correlated noise allowing us to avoid the nonlocal field theory as it is the case in the conventional theory. A feed-back mechanism is introduced in order to control the noise intensity.Comment: submitted to J.Tech. Phys.Letters (St. Petersburg

    New four-dimensional integrals by Mellin-Barnes transform

    Full text link
    This paper is devoted to the calculation by Mellin-Barnes transform of a especial class of integrals. It contains double integrals in the position space in d = 4-2e dimensions, where e is parameter of dimensional regularization. These integrals contribute to the effective action of the N = 4 supersymmetric Yang-Mills theory. The integrand is a fraction in which the numerator is a logarithm of ratio of spacetime intervals, and the denominator is the product of powers of spacetime intervals. According to the method developed in the previous papers, in order to make use of the uniqueness technique for one of two integrations, we shift exponents in powers in the denominator of integrands by some multiples of e. As the next step, the second integration in the position space is done by Mellin-Barnes transform. For normalizing procedure, we reproduce first the known result obtained earlier by Gegenbauer polynomial technique. Then, we make another shift of exponents in powers in the denominator to create the logarithm in the numerator as the derivative with respect to the shift parameter delta. We show that the technique of work with the contour of the integral modified in this way by using Mellin-Barnes transform repeats the technique of work with the contour of the integral without such a modification. In particular, all the operations with a shift of contour of integration over complex variables of two-fold Mellin-Barnes transform are the same as before the delta modification of indices, and even the poles of residues coincide. This confirms the observation made in the previous papers that in the position space all the Green function of N = 4 supersymmetric Yang-Mills theory can be expressed in terms of UD functions.Comment: Talk at El Congreso de Matematica Capricornio, COMCA 2009, Antofagasta, Chile and at DMFA seminar, UCSC, Concepcion, Chile, 24 pages; revised version, Introduction is modified, Conclusion is added, five Appendices are added, Appendix E is ne

    Description of paramagnetic--spin glass transition in Edwards-Anderson model in terms of critical dynamics

    Full text link
    Possibility of description of the glass transition in terms of critical dynamics considering a hierarchy of the intermodal relaxation time is shown. The generalized Vogel-Fulcher law for the system relaxation time is derived in terms of this approach. It is shown that the system satisfies the fluctuating--dissipative theorem in case of the absence of the intermodal relaxation time hierarchy.Comment: 10 pages, 6 figure

    An improved \eps expansion for three-dimensional turbulence: two-loop renormalization near two dimensions

    Full text link
    An improved \eps expansion in the dd-dimensional (d>2d > 2) stochastic theory of turbulence is constructed at two-loop order which incorporates the effect of pole singularities at d→2d \to 2 in coefficients of the \eps expansion of universal quantities. For a proper account of the effect of these singularities two different approaches to the renormalization of the powerlike correlation function of the random force are analyzed near two dimensions. By direct calculation it is shown that the approach based on the mere renormalization of the nonlocal correlation function leads to contradictions at two-loop order. On the other hand, a two-loop calculation in the renormalization scheme with the addition to the force correlation function of a local term to be renormalized instead of the nonlocal one yields consistent results in accordance with the UV renormalization theory. The latter renormalization prescription is used for the two-loop renormalization-group analysis amended with partial resummation of the pole singularities near two dimensions leading to a significant improvement of the agreement with experimental results for the Kolmogorov constant.Comment: 23 pages, 2 figure

    A multiloop improvement of non-singlet QCD evolution equations

    Get PDF
    An approach is elaborated for calculation of "all loop" contributions to the non-singlet evolution kernels from the diagrams with renormalon chain insertions. Closed expressions are obtained for sums of contributions to kernels P(z)P(z) for the DGLAP equation and V(x,y)V(x,y) for the "nonforward" ER-BL equation from these diagrams that dominate for a large value of b0b_0, the first β\beta-function coefficient. Calculations are performed in the covariant ξ\xi-gauge in a MS-like scheme. It is established that a special choice of the gauge parameter ξ=−3\xi=-3 generalizes the standard "naive nonabelianization" approximation. The solutions are obtained to the ER-BL evolution equation (taken at the "all loop" improved kernel), which are in form similar to one-loop solutions. A consequence for QCD descriptions of hard processes and the benefits and incompleteness of the approach are briefly discussed.Comment: 13 pages, revtex, 2 figures are enclosed as eps-file, the text style and figures are corrected following version, accepted for publication to Phys. Rev.
    • …
    corecore