232 research outputs found
Excited-state contribution to the axial-vector and pseudo-scalar correlators with two extra pions
We study multi-particle state contributions to the QCD two-point functions of
the axial-vector and pseudo-scalar quark bilinears in a finite spatial volume.
For sufficiently small quark masses one expects three-meson states with two
additional pions at rest to have the lowest total energy after the ground
state. We calculate this three-meson state contribution using chiral
perturbation theory. We find it to be strongly suppressed and too small to be
seen in present-day lattice simulations.Comment: 17 pages, 5 figure
Static quark free energies at finite temperature with two flavors of improved Wilson quarks
Polyakov loop correlations at finite temperature in two-flavor QCD are
studied in lattice simulations with the RG-improved gluon action and the
clover-improved Wilson quark action. From the simulations on a
lattice, we extract the free energies, the effective running coupling and the Debye screening mass for various color channels of
heavy quark--quark and quark--anti-quark pairs above the critical temperature.
The free energies are well approximated by the screened Coulomb form with the
appropriate Casimir factors. The magnitude and the temperature dependence of
the Debye mass are compared to those of the next-to-leading order thermal
perturbation theory and to a phenomenological formula given in terms of . Also we made a comparison between our results with the Wilson quark
and those with the staggered quark previously reported.Comment: 7 pages, 9 figures, talk given at Lattice 2006 (high temperature and
density
Finite temperature phase transition of two-flavor QCD with an improved Wilson quark action
We study the phase structure of QCD at finite temperatures with two flavors
of dynamical quarks on a lattice with the size , using a renormalization group improved gauge action and a clover improved
Wilson quark action. The simulations are made along the lines of constant
physics determined in terms of at zero-temperature. We
show preliminary results for the spatial string tension in the high temperature
phase.Comment: 7 pages, 7 figures, talk presented at Lattice 2006 (high temperature
and density
Thermodynamics and heavy-quark free energies at finite temperature and density with two flavors of improved Wilson quarks
Thermodynamics of two-flavor QCD at finite temperature and density is studied
on a lattice, using a renormalization group improved gauge
action and the clover improved Wilson quark action. In the simulations along
lines of constant , we calculate the Taylor expansion
coefficients of the heavy-quark free energy with respect to the quark chemical
potential () up to the second order. By comparing the expansion
coefficients of the free energies between quark()and antiquark(),
and between and , we find a characteristic difference at finite
due to the first order coefficient of the Taylor expansion. We also calculate
the quark number and isospin susceptibilities, and find that the second order
coefficient of the quark number susceptibility shows enhancement around the
pseudo-critical temperature.Comment: Talk given at the XXV International Symposium on Lattice Field Theory
(Lattice 2007), July 30 - August 4, 2007, Regensburg, German
Heavy-Quark Free Energy, Debye Mass, and Spatial String Tension at Finite Temperature in Two Flavor Lattice QCD with Wilson Quark Action
We study Polyakov loop correlations and spatial Wilson loop at finite
Temperature in two-flavor QCD simulations with the RG-improved gluon action and
the clover-improved Wilson quark action on a lattice. From the
line of constant physics at and 0.80, we extract
the heavy-quark free energies, the effective running coupling
and the Debye screening mass for various color channels of heavy
quark--quark and quark--anti-quark pairs above the critical temperature. The
free energies are well approximated by the screened Coulomb form with the
appropriate Casimir factors at high temperature. The magnitude and the
temperature dependence of the Debye mass are compared to those of the
next-to-leading order thermal perturbation theory and to a phenomenological
formula in terms of . We make a comparison between our results
with the Wilson quark action and the previous results with the staggered quark
action. The spatial string tension is also studied in the high temperature
phase and is compared to the next-to-next-leading order prediction in an
effective theory with dimensional reduction.Comment: 25 pages, 37 EPS figure
- …