18,277 research outputs found
Comment on ''Phase Diagram of LaSrCuO Probed in the Infrared: Imprints of Charge Stripe Excitations''
Recently Lucarelli {\it et al.} have reported\cite{lucarelli}
temperature-dependence of the in-plane optical reflectivity of
LaSrCuO over a wide doping range, focusing on the infrared
peaks at 30 cm (for =0.12), 250 cm and 510 cm. They
interpreted the first peak (30 cm) as a signature of charge stripe
ordering, while the latter two (250 cm and 510 cm) are attributed
to the polaronic charge excitations. However, careful readers would notice that
the reported spectra are largely different from those so far measured on the
same system. As we illustrate below, all these peaks are caused by an
uncontrolled leakage of the c-axis reflectivity into the measured spectra.Comment: 1 page, 1 figure, accepted for publication in Phys. Rev. Lett 91
(2003
Sliding Density-Wave in Sr_{14}Cu_{24}O_{41} Ladder Compounds
We used transport and Raman scattering measurements to identify the
insulating state of self-doped spin 1/2 two-leg ladders of Sr_{14}Cu_{24}O_{41}
as a weakly pinned, sliding density wave with non-linear conductivity and a
giant dielectric response that persists to remarkably high temperatures
On the Superradiance of Spin-1 Waves in an Equatorial Wedge around a Kerr Hole
Recently Van Putten has suggested that superradiance of magnetosonic waves in
a toroidal magnetosphere around a Kerr black hole may play a role in the
central engine of gamma-ray bursts. In this context, he computed (in the WKB
approximation) the superradiant amplification of scalar waves confined to a
thin equatorial wedge around a Kerr hole and found that the superradiance is
higher than for radiation incident over all angles. This paper presents
calculations of both spin-0 (scalar) superradiance (integrating the radial
equation rather than using the WKB method) and and spin-1
(electromagnetic/magnetosonic) superradiance, in Van Putten's wedge geometry.
In contrast to the scalar case, spin-1 superradiance decreases in the wedge
geometry, decreasing the likelihood of its astrophysical importance.Comment: Submitted to The Astrophysical Journal Letter
Effects of biquadratic exchange on the spectrum of elementary excitations in spin ladders
We investigate the influence of biquadratic exchange interactions on the
low-lying excitations of a S=1/2-ladder using perturbation theory, numerical
diagonalization of finite systems and exact results for ladders with matrix
product ground states. We consider in particular the combination of biquadratic
exchange interactions corresponding to ring exchange on the basic ladder
plaquette. We find that a moderate amount of ring exchange reduces the spin gap
substantially and makes equal bilinear exchange on legs and rungs consistent
with experimentally observed spectra.Comment: RevTeX, 17 pages, 6 embedded figures, uses epsfi
Anisotropic effect of field on the orthorhombic-to-tetragonal transition in the striped cuprate (La,Nd)_{2-x}Sr_xCuO_4
The Nd-doped cuprate La_{2-y-x}Nd_ySr_xCuO_4 displays a first-order phase
transition at T_d (= 74 K for x=0.10, y = 0.60) to a low-temperature tetragonal
(LTT) phase. A magnetic field H applied || the a-axis leads to an increase in
T_d, whereas T_d is decreased when H || c. These effects show that magnetic
ordering involving both Nd and Cu spins plays a key role in driving the LTO-LTT
transition. Related anisotropic effects are observed in the uniform
susceptibility and the in-plane magnetoresistance.Comment: 5 pages, 5 figure
- …
