713 research outputs found

    Review of Solar and Reactor Neutrinos

    Full text link
    Over the last several years, experiments have conclusively demonstrated that neutrinos are massive and that they mix. There is now direct evidence for νe\nu_es from the Sun transforming into other active flavors while en route to the Earth. The disappearance of reactor νˉe\bar{\nu}_es, predicted under the assumption of neutrino oscillation, has also been observed. In this paper, recent results from solar and reactor neutrino experiments and their implications are reviewed. In addition, some of the future experimental endeavors in solar and reactor neutrinos are presented.Comment: Proceedings of the XXII International Symposium on Lepton and Photon Interactions at High Energy (Lepton-Photon 2005, June 30 to July 5, 2005, Uppsala, Sweden). 11 figures, 5 table

    Status of the Solar Neutrino Puzzle

    Get PDF
    Using the latest results from the solar neutrino experiments and a few standard assumptions, I show that the popular solar models are ruled out at the 3σ\sigma level or at least TWO of the experiments are incorrect. Alternatively, one of the assumptions could be in error. These assumptions are spelled out in detail as well as how each one affects the argument.Comment: Latex, 8 pages + 4 uuencoded figures, minor changes made, FERMILAB-PUB/273-

    Semi-Empirical Bound on the Chlorinr-37 Solar Neutrino Experiment

    Full text link
    The Kamiokande measurement of energetic Boron-8 neutrinos from the sun is used to set a lower bound on the contribution of the same neutrinos to the signal in the \Chlorine\ experiment. Implications for Beryllium-7 neutrinos are discussed.Comment: Latex, 6 pages + 1 postscript figure (included). UTAPHY-HEP-

    Sensitivity of the g-mode frequencies to pulsation codes and their parameters

    Full text link
    From the recent work of the Evolution and Seismic Tools Activity (ESTA, Lebreton et al. 2006; Monteiro et al. 2008), whose Task 2 is devoted to compare pulsational frequencies computed using most of the pulsational codes available in the asteroseismic community, the dependence of the theoretical frequencies with non-physical choices is now quite well fixed. To ensure that the accuracy of the computed frequencies is of the same order of magnitude or better than the observational errors, some requirements in the equilibrium models and the numerical resolutions of the pulsational equations must be followed. In particular, we have verified the numerical accuracy obtained with the Saclay seismic model, which is used to study the solar g-mode region (60 to 140μ\muHz). We have compared the results coming from the Aarhus adiabatic pulsation code (ADIPLS), with the frequencies computed with the Granada Code (GraCo) taking into account several possible choices. We have concluded that the present equilibrium models and the use of the Richardson extrapolation ensure an accuracy of the order of 0.01μHz0.01 \mu Hz in the determination of the frequencies, which is quite enough for our purposes.Comment: 10 pages, 5 figures, accepted in Solar Physic

    Thyroid-Associated Orbitopathy and Biomarkers: Where We Are and What We Can Hope for the Future.

    Get PDF
    Thyroid-associated orbitopathy (TAO) is the most common autoimmune disease of the orbit. It occurs more often in patients presenting with hyperthyroidism, characteristic of Graves' disease, but may be associated with hypothyroidism or euthyroidism. The diagnosis of TAO is based on clinical orbital features, radiological criteria, and the potential association with thyroid disease. To date, there is no specific marker of the orbital disease, making the early diagnosis difficult, especially if the orbital involvement precedes the thyroid dysfunction. The goal of this review is to present the disease and combine the available data in the literature concerning investigation of TAO biomarkers. Despite the progress done in the understanding of TAO disease, some important pieces are still missing. Typically, for the future, major efforts have to be done in the discovery of new biomarkers, validation of the suspected candidates on multicenter cohorts with standardized methodologies, and establishment of their clinical performances on the specific clinical application fields in order to improve not only the management of the TAO patients but also the therapeutic options and follow-up

    Prospects for studying the solar CNO cycle by means of a lithium neutrino detector

    Full text link
    Lithium detectors have a high sensitivity to CNO neutrinos from the Sun. The present experimental data and prospects for future experiments on the detection of CNO neutrinos are discussed. A nonstationary case is considered when the flux of 13N neutrinos is higher than the standard solar model predicts due to the influx of fresh material from the peripheral layers to the solar core.Comment: 12 pages, 5 figures, a thoroughly revised version, reported at International Symposium "Physics of Massive Neutrinos" at MILOS (Greece) 19-23 May 200

    Screening of Nuclear Reactions in the Sun and Solar Neutrinos

    Full text link
    We quantitatively determine the effect and the uncertainty on solar neutrino production arising from the screening process. We present predictions for the solar neutrino fluxes and signals obtained with different screening models available in the literature and by using our stellar evolution code. We explain these numerical results in terms of simple laws relating the screening factors with the neutrino fluxes. Futhermore we explore a wider range of models for screening, obtained from the Mitler model by introducing and varying two phenomenological parameters, taking into account effects not included in the Mitler prescription. Screening implies, with respect to a no-screening case, a central temperat reduction of 0.5%, a 2% (8%) increase of Beryllium (Boron)-neutrino flux and a 2% (12%) increase of the Gallium (Chlorine) signal. We also find that uncertainties due to the screening effect ar at the level of 1% for the predicted Beryllium-neutrino flux and Gallium signal, not exceeding 3% for the Boron-neutrino flux and the Chlorine signal.Comment: postscript file 11 pages + 4 figures compressed and uuencoded we have replaced the previous paper with a uuencoded file (the text is the same) for any problem please write to [email protected]

    How Well Do We (and Will We) Know Solar Neutrino Fluxes and Oscillation Parameters?

    Get PDF
    Assuming neutrino oscillations occur, the pp electron neutrino flux is uncertain by at least a factor of two, the 8B{\rm ^8B} flux by a factor of five, and the 7Be{\rm ^7Be} flux by a factor of forty-five. Calculations of the expected results of future solar neutrino experiments (SuperKamiokande, SNO, BOREXINO, ICARUS, HELLAZ, and HERON) are used to illustrate the extent to which these experiments will restrict the range of the allowed neutrino mixing parameters. We present an improved formulation of the ``luminosity constraint'' and show that at 95\% confidence limit this constraint establishes the best available limits on the rate of creation of pp neutrinos in the solar interior and provides the best upper limit to the 7Be{\rm ^7Be} neutrino flux.Comment: 37 pages, uuencoded Z-compressed postscript file (with figures); Submitted to Physical Review

    Solar Model Uncertainties, MSW Analysis, and Future Solar Neutrino Experiments

    Full text link
    Various theoretical uncertainties in the standard solar model and in the Mikheyev-Smirnov-Wolfenstein (MSW) analysis are discussed. It is shown that two methods of estimating the solar neutrino flux uncertainties are equivalent: (a) a simple parametrization of the uncertainties using the core temperature and the nuclear production cross sections; (b) the Monte Carlo method of Bahcall and Ulrich. In the MSW analysis, we emphasize proper treatments of correlation of theoretical uncertainties between flux components and between different detectors, the Earth effect, and multiple solutions in a combined χ2\chi^2 procedure. The MSW solutions for various standard and nonstandard solar models are also shown. The MSW predictions of the global solutions for the future solar neutrino experiments are given, emphasizing the measurement of the energy spectrum and the day-night effect in Sudbury Neutrino Observatory and Super-Kamiokande to distinguish the two solutions.Comment: (Revtex 3.0, 43 pages + 26 figures (uuencoded ps files attached), Easy way: ps files of entire text with embedded figures available by anonymous ftp://upenn5.hep.upenn.edu/pub/hata/papers/msw_analysis.u
    corecore