444 research outputs found

    A bulk 2D Pauli Limited Superconductor

    Full text link
    We present a nearly perfect Pauli-limited critical field phase diagram for the anisotropic organic superconductor \α\alpha-(ET)2_2NH4_4(SCN)4_4 when the applied magnetic field is oriented parallel to the conducting layers. The critical fields ({H_{c_2}) were found by use of penetration depth measurements. Because {H_{c_2} is Pauli-limited, the size of the superconducting energy gap can be calculated. The role of spin-orbit scattering and many-body effects play a role in explaining our measurements.Comment: 4 pages, 5 figures. V5, corrections were made to the text, present data was include

    Substitution Effect by Deuterated Donors on Superconductivity in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Full text link
    We investigate the superconductivity in the deuterated BEDT-TTF molecular substitution system κ\kappa-[(h8-BEDT-TTF)1x_{1-x}(d8-BEDT-TTF)x_x]2_2Cu[N(CN)2_2]Br, where h8 and d8 denote fully hydrogenated and deuterated molecules, respectively. Systematic and wide range (xx = 0 -- 1) substitution can control chemical pressure finely near the Mott boundary, which results in the modification of the superconductivity. After cooling slowly, the increase of TcT_{\textrm{c}} observed up to xx \sim 0.1 is evidently caused by the chemical pressure effect. Neither reduction of TcT_{\textrm{c}} nor suppression of superconducting volume fraction is found below xx \sim 0.5. This demonstrates that the effect of disorder by substitution is negligible in the present system. With further increase of xx, both TcT_{\textrm{c}} and superconducting volume fraction start to decrease toward the values in xx = 1.Comment: J. Phys. Soc. Jp

    Critical State Behaviour in a Low Dimensional Metal Induced by Strong Magnetic Fields

    Full text link
    We present the results of magnetotransport and magnetic torque measurements on the alpha-(BEDT-TTF)2KHg(SCN)4 charge-transfer salt within the high magnetic field phase, in magnetic fields extending to 33 T and temperatures as low as 27 mK. While the high magnetic field phase (at fields greater than ~ 23 T) is expected, on theoretical grounds, to be either a modulated charge-density wave phase or a charge/spin-density wave hybrid, the resistivity undergoes a dramatic drop below ~ 3 K within the high magnetic field phase, falling in an approximately exponential fashion at low temperatures, while the magnetic torque exhibits pronounced hysteresis effects. This hysteresis, which occurs over a broad range of fields, is both strongly temperature-dependent and has several of the behavioural characteristics predicted by critical-state models used to describe the pinning of vortices in type II superconductors in strong magnetic fields. Thus, rather than exhibiting the usual behaviour expected for a density wave ground state, both the transport and the magnetic properties of alpha-(BEDT-TTF)2KHg(SCN)4, at high magnetic fields, closely resembles those of a type II superconductor

    Experimental observation of Frohlich superconductivity in high magnetic fields

    Full text link
    Resistivity and irreversible magnetisation data taken within the high-magnetic-field CDWx phase of the quasi-two-dimensional organic metal alpha-(BEDT-TTF)2KHg(SCN)4 are shown to be consistent with a field-induced inhomogeneous superconducting phase. In-plane skin-depth measurements show that the resistive transition on entering the CDWx phase is both isotropic and representative of the bulk.Comment: ten pages, four figure

    Disorder Effect on the Vortex Pinning by the Cooling Process Control in the Organic Superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Full text link
    We investigate the influence of disorders in terminal ethylene groups of BEDT-TTF molecules (ethylene-disorders) on the vortex pinning of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br. Magnetization measurements are performed under different cooling-processes. The second peak in the magnetization hysteresis curve is observed for all samples studied, and the hysteresis width of the magnetization becomes narrower by cooling faster. In contradiction to the simple pinning effect of disorder, this result shows the suppression of the vortex pinning force by introducing more ethylene-disorders. The ethylene-disorder domain model is proposed for explaining the observed result. In the case of the system containing a moderate number of the ethylene-disorders, the disordered molecules form a domain structure and it works as an effective pinning site. On the contrary, an excess number of the ethylene-disorders may weaken the effect of the domain structure, which results in the less effective pinning force on the vortices.Comment: 6 pages, 6 figure

    Superconductivity in an organic insulator at very high magnetic fields

    Full text link
    We investigate by electrical transport the field-induced superconducting state (FISC) in the organic conductor λ\lambda-(BETS)2_2FeCl4_4. Below 4 K, antiferromagnetic-insulator, metallic, and eventually superconducting (FISC) ground states are observed with increasing in-plane magnetic field. The FISC state survives between 18 and 41 T, and can be interpreted in terms of the Jaccarino-Peter effect, where the external magnetic field {\em compensates} the exchange field of aligned Fe3+^{3+} ions. We further argue that the Fe3+^{3+} moments are essential to stabilize the resulting singlet, two-dimensional superconducting stateComment: 9 pages 3 figure

    Isotope effect in superconductors with coexisting interactions of phonon and nonphonon mechanisms

    Full text link
    We examine the isotope effect of superconductivity in systems with coexisting interactions of phonon and nonphonon mechanisms in addition to the direct Coulomb interaction. The interaction mediated by the spin fluctuations is discussed as an example of the nonphonon interaction. Extended formulas for the transition temperature Tc and the isotope-effect coefficient alpha are derived for cases (a) omega_np omega_D, where omega_np is an effective cutoff frequency of the nonphonon interaction that corresponds to the Debye frequency omega_D in the phonon interaction. In case (a), it is found that the nonphonon interaction does not change the condition for the inverse isotope effect, i.e., mu^* > lambda_ph/2, but it modifies the magnitude of alpha markedly. In particular, it is found that a giant isotope shift occurs when the phonon and nonphonon interactions cancel each other largely. For instance, strong critical spin fluctuations may give rise to the giant isotope effect. In case (b), it is found that the inverse isotope effect occurs only when the nonphonon interaction and the repulsive Coulomb interaction, in total effect, work as repulsive interactions against the superconductivity. We discuss the relevance of the present result to some organic superconductors, such as kappa-(ET)2Cu(NCS)2 and Sr2RuO4 superconductors, in which inverse isotope effects have been observed, and briefly to high-Tc cuprates, in which giant isotope effects have been observed.Comment: 4 pages, 2 figures, (with jpsj2.cls, ver.1.2), v2:linguistic correction

    Impurity Effect on the In-plane Penetration Depth of the Organic Superconductors κ\kappa-(BEDT-TTF)2X_2X (XX = Cu(NCS)2_2 and Cu[N(CN)2_2]Br)

    Full text link
    We report the in-plane penetration depth λ\lambda_{\parallel} of single crystals κ\kappa-(BEDT-TTF)2X_2X (X=X= Cu(NCS)2_2 and Cu[N(CN)2_2]Br) by means of the reversible magnetization measurements under the control of cooling-rate. In XX = Cu(NCS)2_2, λ(0)\lambda_{\parallel}(0) as an extrapolation toward TT = 0 K does not change by the cooling-rate within the experimental accuracy, while TcT_{\textrm{c}} is slightly reduced. On the other hand, in XX = Cu[N(CN)2_2]Br, λ(0)\lambda_{\parallel}(0) indicates a distinct increase by cooling faster. The different behavior of λ(0)\lambda_{\parallel}(0) on cooling-rate between the two salts is quantitatively explained in terms of the local-clean approximation (London model), considering that the former salt belongs to the very clean system and the later the moderate clean one. The good agreement with this model demonstrates that disorders of ethylene-group in BEDT-TTF introduced by cooling faster increase the electron(quasiparticle)-scattering, resulting in shorter mean free path.Comment: 8 pages, 9 figure

    Competition between Pauli and orbital effects in a charge-density wave system

    Full text link
    We present angular dependent magneto-transport and magnetization measurements on alpha-(ET)2MHg(SCN)4 compounds at high magnetic fields and low temperatures. We find that the low temperature ground state undergoes two subsequent field-induced density-wave type phase transitions above a critical angle of the magnetic field with respect to the crystallographic axes. This new phase diagram may be qualitatively described assuming a charge density wave ground state which undergoes field-induced transitions due to the interplay of Pauli and orbital effects.Comment: 11 pages, 4 figures, shown at the APS march meeting 2000, appears in the Ph.D. thesis of J. S. Qualls (Florida State University, 1999), and submitted to PR

    Surface characterization and surface electronic structure of organic quasi-one-dimensional charge transfer salts

    Get PDF
    We have thoroughly characterized the surfaces of the organic charge-transfer salts TTF-TCNQ and (TMTSF)2PF6 which are generally acknowledged as prototypical examples of one-dimensional conductors. In particular x-ray induced photoemission spectroscopy turns out to be a valuable non-destructive diagnostic tool. We show that the observation of generic one-dimensional signatures in photoemission spectra of the valence band close to the Fermi level can be strongly affected by surface effects. Especially, great care must be exercised taking evidence for an unusual one-dimensional many-body state exclusively from the observation of a pseudogap.Comment: 11 pages, 12 figures, v2: minor changes in text and figure labellin
    corecore