92 research outputs found

    Ahead of Time Deployment in ROM of a Java-OS

    Full text link

    Application-Driven Customization of an Embedded Java Virtual Machine

    Get PDF
    Java for embedded devices is today synonym of "embeddable pseudo-Java". In order to limit their memory footprint, the embedded flavors of Java introduce incompatibilities against the standard edition, and break Java's portability rule. The application developer has to comply to specific Java APIs and incomplete runtime features. In this paper, we introduce a way to embed applications written for Java 2 Standard Edition. The applications are pre-deployed into a virtual Java execution environment, which is analyzed so that the Java virtual machine can be tailored according to the runtime needs of the system. Thus, the programmer is not enforced to comply to a particular Java environment; but conversely, the Java environment is customized according to its applications and targeted device. Experiments reveal that the customized virtual machines are comparable in size to existing static embedded Java solutions, while being more flexible and preserving Java compatibility

    Electromagnetic-field quantization and spontaneous decay in left-handed media

    Full text link
    We present a quantization scheme for the electromagnetic field interacting with atomic systems in the presence of dispersing and absorbing magnetodielectric media, including left-handed material having negative real part of the refractive index. The theory is applied to the spontaneous decay of a two-level atom at the center of a spherical free-space cavity surrounded by magnetodielectric matter of overlapping band-gap zones. Results for both big and small cavities are presented, and the problem of local-field corrections within the real-cavity model is addressed.Comment: 15 pages, 5 figures, RevTe

    Hamiltonian structure for dispersive and dissipative dynamical systems

    Full text link
    We develop a Hamiltonian theory of a time dispersive and dissipative inhomogeneous medium, as described by a linear response equation respecting causality and power dissipation. The proposed Hamiltonian couples the given system to auxiliary fields, in the universal form of a so-called canonical heat bath. After integrating out the heat bath the original dissipative evolution is exactly reproduced. Furthermore, we show that the dynamics associated to a minimal Hamiltonian are essentially unique, up to a natural class of isomorphisms. Using this formalism, we obtain closed form expressions for the energy density, energy flux, momentum density, and stress tensor involving the auxiliary fields, from which we derive an approximate, ``Brillouin-type,'' formula for the time averaged energy density and stress tensor associated to an almost mono-chromatic wave.Comment: 68 pages, 1 figure; introduction revised, typos correcte

    Photonic Band Gaps of Three-Dimensional Face-Centered Cubic Lattices

    Full text link
    We show that the photonic analogue of the Korringa-Kohn-Rostocker method is a viable alternative to the plane-wave method to analyze the spectrum of electromagnetic waves in a three-dimensional periodic dielectric lattice. Firstly, in the case of an fcc lattice of homogeneous dielectric spheres, we reproduce the main features of the spectrum obtained by the plane wave method, namely that for a sufficiently high dielectric contrast a full gap opens in the spectrum between the eights and ninth bands if the dielectric constant ϵs\epsilon_s of spheres is lower than the dielectric constant ϵb\epsilon_b of the background medium. If ϵs>ϵb\epsilon_s> \epsilon_b, no gap is found in the spectrum. The maximal value of the relative band-gap width approaches 14% in the close-packed case and decreases monotonically as the filling fraction decreases. The lowest dielectric contrast ϵb/ϵs\epsilon_b/\epsilon_s for which a full gap opens in the spectrum is determined to be 8.13. Eventually, in the case of an fcc lattice of coated spheres, we demonstrate that a suitable coating can enhance gap widths by as much as 50%.Comment: 19 pages, 6 figs., plain latex - a section on coated spheres, two figures, and a few references adde

    Checking Properties Described by State Machines: On Synergy of Instrumentation, Slicing, and Symbolic Execution

    Get PDF
    We introduce a novel technique for checking properties described by finite state machines. The technique is based on a synergy of three well-known methods: instrumentation, program slicing, and symbolic execution. More precisely, we instrument a given program with a code that tracks runs of state machines representing various properties. Next we slice the program to reduce its size without affecting runs of state machines. And then we symbolically execute the sliced program to find real violations of the checked properties, i.e. real bugs. Depending on the kind of symbolic execution, the technique can be applied as a stand-alone bug finding technique, or to weed out some false positives from an output of another bug-finding tool. We provide several examples demonstrating the practical applicability of our technique.Představujeme novou techniku pro ověřování vlastností popsaných konečně-stavovými stroji. Tato technika je založena na synergii tří známých metod: instrumentace, prořezání programu a symbolické vykonání. Přesněji, instrumentujeme daný program kódem, který sleduje běh stavových strojů představujících různé vlastnosti. Dále program prořežeme, abychom zmenšili jeho velikost při zachování běhů stavových strojů. Nakonec prořezaný program symbolicky vykonáme, abychom našli skutečné porušení ověřovaných vlastností, t.j. skutečné chyby. Podle použitého druhu symbolického vykonání může být tato technika použita jako samostatná metoda pro detekci chyb nebo k vytřídění některých falešných hlášení z výstupu jiných nástrojů pro detekci chyb. Poskytujeme několik příkladů, které dokumentují praktickou použitelnost naší techniky

    Cell Migration in the Immune System: the Evolving Inter-Related Roles of Adhesion Molecules and Proteinases

    Get PDF
    Leukocyte extravasation into perivascular tissue during inflammation and lymphocyte homing to lymphoid organs involve transient adhesion to the vessel endothelium, followed by transmigration through the endothelial cell (EC) layer and establishment of residency at the tissue site for a period of time. In these processes, leukocytes undergo multiple attachments to, and detachments from, the vessel-lining endothelial cells, prior to transendothelial cell migration. Transmigrating leukocytes must traverse a subendothelial basement membrane en route to perivascular tissues and utilize enzymes known as matrix metalloproteinases to make selective clips in the extracellular matrix components of the basement membrane. This review will focus on the evidence for a link between adhesion of leukocytes to endothelial cells, the induction of matrix metalloproteinases mediated by engagement of adhesion receptors on leukocytes, and the ability to utilize these matrix metalloproteinases to facilitate leukocyte invasion of tissues. Leukocytes with invasive phenotypes express high levels of MMPs, and expression of MMPs enhances the migratory and invasive properties of these cells. Furthermore, MMPs may be used by lymphocytes to proteolytically cleave molecules such as adhesion receptors and membrane bound cytokines, increasing their efficiency in the immune response. Engagement of leukocyte adhesion receptors may modulate adhesive (modulation of integrin affinities and expression), synthetic (proteinase induction and activation), and surface organization (clustering of proteolyric complexes) behaviors of invasive leukocytes. Elucidation of these pathways will lead to better understanding of controlling mechanisms in order to develop rational therapeutic approaches in the areas of inflammation and autoimmunity
    corecore