385 research outputs found

    Multi-frequency Studies of Massive Cores with Complex Spatial and Kinematic Structures

    Get PDF
    Five regions of massive star formation have been observed in various molecular lines in the frequency range ∌85−89\sim 85-89 GHz. The studied regions possess dense cores, which host young stellar objects. The physical parameters of the cores are estimated, including kinetic temperatures (∌20−40\sim 20-40 K), sizes of the emitting regions (∌0.1−0.6\sim 0.1-0.6 pc), and virial masses (∌40−500M⊙\sim 40-500 M_{\odot}). Column densities and abundances of various molecules are calculated in the local thermodynamical equilibrium approximation. The core in 99.982+4.17, associated with the weakest IRAS source, is characterized by reduced molecular abundances. Molecular line widths decrease with increasing distance from the core centers (bb). For b\ga 0.1~pc, the dependences ΔV(b)\Delta V(b) are close to power laws (∝b−p\propto b^{-p}), where pp varies from ∌0.2\sim 0.2 to ∌0.5\sim 0.5, depending on the object. In four cores, the asymmetries of the optically thick HCN(1--0) and HCO+^+(1--0) lines indicate systematic motions along the line of sight: collapse in two cores and expansion in two others. Approximate estimates of the accretion rates in the collapsing cores indicate that the forming stars have masses exceeding the solar mass.Comment: 18 pages, 7 figures, 6 table

    Extended Star Formation and Molecular Gas in the Tidal Arms near NGC3077

    Full text link
    We report the detection of ongoing star formation in the prominent tidal arms near NGC 3077 (member of the M 81 triplet). In total, 36 faint compact HII regions were identified, covering an area of ~4x6 kpc^2. Most of the HII regions are found at HI column densities above 1x10^21 cm^-2 (on scales of 200 pc), well within the range of threshold columns measured in normal galaxies. The HII luminosity function resembles the ones derived for other low-mass dwarf galaxies in the same group; we derive a total star formation rate of 2.6x10^-3 M_sun/yr in the tidal feature. We also present new high-resolution imaging of the molecular gas distribution in the tidal arm using CO observations obtained with the OVRO interferometer. We recover about one sixth of the CO flux (or M_H2~2x10^6 M_sun, assuming a Galactic conversion factor) originally detected in the IRAM 30m single dish observations, indicating the presence of a diffuse molecular gas component in the tidal arm. The brightest CO peak in the interferometer map (comprising half of the detected CO flux) is coincident with one of the brightest HII regions in the feature. Assuming a constant star formation rate since the creation of the tidal feature (presumably ~3x10^8 years ago), a total mass of ~7x10^5 M_sun has been transformed from gas into stars. Over this period, the star formation in the tidal arm has resulted in an additional enrichment of Delta(Z)>0.002. The reservoir of atomic and molecular gas in the tidal arm is ~3x10^8 M_sun, allowing star formation to continue at its present rate for a Hubble time. Such wide-spread, low-level star formation would be difficult to image around more distant galaxies but may be detectable through intervening absorption in quasar spectra.Comment: Accepted for publication in the Astronomical Journa

    The Eastern Arm of M83 Revisited: High-Resolution Mapping of 12CO 1-0 Emission

    Full text link
    We have used the Owens Valley Millimeter Array to map 12CO (J=1-0) along a 3.5 kpc segment of M83's eastern spiral arm at resolutions of 6.5"x3.5", 10", and 16". The CO emission in most of this segment lies along the sharp dust lane demarking the inner edge of the spiral arm, but beyond a certain point along the arm the emission shifts downstream from the dust lane to become better aligned with the young stars seen in blue and H-beta images. This morphology resembles that of the western arm of M100. Three possibilities, none of which is wholly satisfactory, are considered to explain the deviation of the CO arm from the dust lane: heating of the CO by UV radiation from young stars, heating by low-energy cosmic rays, and a molecular medium consisting of two (diffuse and dense) components which react differently to the density wave. Regardless, the question of what CO emission traces along this spiral arm is a complicated one. Strong tangential streaming is observed where the arm crosses the kinematic major axis of the galaxy, implying that the shear becomes locally prograde in the arms. Inferred from the streaming is a very high gas surface density of about 230 solar masses/pc**2 and an arm-interarm contrast greater than 2.3 in the part of the arm near the major axis. Using two different criteria, we find that the gas at this location is well above the threshold for gravitational instability -- much more clearly so than in either M51 or M100.Comment: Accepted for publication in ApJ. 25 pages, 5 figures. Manuscript in LaTeX, figures in pdf. Fig 3 in colo

    Extended Recurrence Plot Analysis and its Application to ERP Data

    Get PDF
    We present new measures of complexity and their application to event related potential data. The new measures base on structures of recurrence plots and makes the identification of chaos-chaos transitions possible. The application of these measures to data from single-trials of the Oddball experiment can identify laminar states therein. This offers a new way of analyzing event-related activity on a single-trial basis.Comment: 21 pages, 8 figures; article for the workshop ''Analyzing and Modelling Event-Related Brain Potentials: Cognitive and Neural Approaches`` at November 29 - December 01, 2001 in Potsdam, German

    Prevalence and co-infection of Toxoplasma gondii and Neospora caninum in Apodemus sylvaticus in an area relatively free of cats

    Get PDF
    The protozoan parasite Toxoplasma gondii is prevalent worldwide and can infect a remarkably wide range of hosts despite felids being the only definitive host. As cats play a major role in transmission to secondary mammalian hosts, the interaction between cats and these hosts should be a major factor determining final prevalence in the secondary host. This study investigates the prevalence of T. gondii in a natural population of Apodemus sylvaticus collected from an area with low cat density (<2·5 cats/km2). A surprisingly high prevalence of 40·78% (95% CI: 34·07%–47·79%) was observed despite this. A comparable level of prevalence was observed in a previously published study using the same approaches where a prevalence of 59% (95% CI: 50·13%–67·87%) was observed in a natural population of Mus domesticus from an area with high cat density (>500 cats/km2). Detection of infected foetuses frompregnant dams in both populations suggests that congenital transmission may enable persistence of infection in the absence of cats. The prevalences of the related parasite, Neospora caninum were found to be low in both populations (A. sylvaticus: 3·39% (95% CI: 0·12%–6·66%); M. domesticus: 3·08% (95% CI: 0·11%–6·05%)). These results suggest that cat density may have a lower than expected effect on final prevalence in these ecosystems

    A Turbulent Origin for Flocculent Spiral Structure in Galaxies

    Full text link
    The flocculent structure of star formation in 7 galaxies has a Fourier transform power spectrum for azimuthal intensity scans with a power law slope that increases systematically from -1 at large scales to -1.7 at small scales. This is the same pattern as in the power spectra for azimuthal scans of HI emission in the Large Magellanic Clouds and for flocculent dust clouds in galactic nuclei. The steep part also corresponds to the slope of -3 for two-dimensional power spectra that have been observed in atomic and molecular gas surveys of the Milky Way and the Large and Small Magellanic Clouds. The same power law structure for star formation arises in both flocculent and grand design galaxies, which implies that the star formation process is the same in each. Fractal Brownian motion models that include discrete stars and an underlying continuum of starlight match the observations if all of the emission is organized into a global fractal pattern with an intrinsic 1D power spectrum having a slope between 1.3 and 1.8. We suggest that the power spectrum of optical light in galaxies is the result of turbulence, and that large-scale turbulent motions are generated by sheared gravitational instabilities which make flocculent spiral arms first and then cascade to form clouds and clusters on smaller scales.Comment: accepted for ApJ, 31 pg, 9 figure

    A xylem sap retrieval pathway in rice leaf blades: evidence of a role for endocytosis?

    Get PDF
    The structure and transport properties of pit membranes at the interface between the metaxylem and xylem parenchyma cells and the possible role of these pit membranes in solute transfer to the phloem were investigated. Electron microscopy revealed a fibrillar, almost tubular matrix within the pit membrane structure between the xylem vessels and xylem parenchyma of leaf blade bundles in rice (Oryza sativa). These pits are involved primarily with regulating water flux to the surrounding xylem parenchyma cells. Vascular parenchyma cells contain large mitochondrial populations, numerous dictyosomes, endomembrane complexes, and vesicles in close proximity to the pit membrane. Taken collectively, this suggests that endocytosis may occur at this interface. A weak solution of 5,6-carboxyfluorescein diacetate (5,6-CFDA) was applied to cut ends of leaves and, after a minimum of 30 min, the distribution of the fluorescent cleavage product, 5,6-carboxyfluorescein (5,6-CF), was observed using confocal microscopy. Cleavage of 5,6-CFDA occurred within the xylem parenchyma cells, and the non-polar 5,6-CF was then symplasmically transported to other parenchyma elements and ultimately, via numerous pore plasmodesmata, to adjacent thick-walled sieve tubes. Application of Lucifer Yellow, and, separately, Texas Red-labelled dextran (10 kDa) to the transpiration stream, confirmed that these membrane-impermeant probes could only have been offloaded from the xylem via the xylem vessel–xylem parenchyma pit membranes, suggesting endocytotic transmembrane transfer of these membrane-impermeant fluorophores. Accumulation within the thick-walled sieve tubes, but not in thin-walled sieve tubes, confirms the presence of a symplasmic phloem loading pathway, via pore plasmodesmata between xylem parenchyma and thick-walled sieve tubes, but not thin-walled sieve tubes

    Theoretical Circular Dichroism Spectra of the α-Helical Protein Calexitin with the Dipole Interaction Model Including the n-π* Transition

    Get PDF
    Circular dichroism (CD) is an important structural biology technique used to study protein dynamics, and most especially the secondary structure of peptides and proteins. Although CD is a technique that is relatively easy to introduce to undergraduate students, the high cost of obtaining a conventional CD instrument and the time required for sample preparation prevents a good number of students from having hands-on experiments demonstrating the principle of CD. Herein, theoretical circular dichroism with the dipole interaction model, DInaMo, is proposed as a tool for introducing students to CD. Using the dipole interaction model, the CD spectra of an α-helical protein, calexcitin, is predicted with a good morphology, and peak intensity and location of the π– π* transition. The n–π* transition is well approximated with normal modes obtained in the correct location and sign

    Sporopollenin exine capsules (SpECs) derived from Lycopodium clavatum provide practical antioxidant properties by retarding rancidification of an ω-3 oil

    Get PDF
    In recent years the use of natural antioxidants in foodstuffs and personal care products has become increasingly important for consumers and therefore manufacturers. In this work, sporopollenin exine capsules (SpECs), extracted from spores of the common club moss Lycopodium clavatum L, have been shown to protect an ω-3 oil from oxidation caused by natural light or accelerated oxidation with UV irradiation. The mechanism of action has been shown to be principally by free radical quenching as opposed to light shielding, supported by evidence of similarity in levels of protection when the ratio of SpECs to oil was 0.2 % w/v compared with 50 % w/w. The antioxidant effect is not materially altered by the extraction process from the raw material and is clearly an inherent property of the sporopollenin contained in the spores of L. clavatum due to the accessible phenolic groups on the surface on the SpECs. These results provide promising evidence that SpECs could be useful as a bio-sourced antioxidant for protecting ω-3 oils and related oxidation-prone molecules
    • 

    corecore