184 research outputs found

    HIV gp120 Induces, NF-κB Dependent, HIV Replication that Requires Procaspase 8

    Get PDF
    HIV envelope glycoprotein gp120 causes cellular activation resulting in anergy, apoptosis, proinflammatory cytokine production, and through an unknown mechanism, enhanced HIV replication.We describe that the signals which promote apoptosis are also responsible for the enhanced HIV replication. Specifically, we demonstrate that the caspase 8 cleavage fragment Caspase8p43, activates p50/p65 Nuclear Factor kappaB (NF-kappaB), in a manner which is inhibited by dominant negative IkappaBalpha. This caspase 8 dependent NF-kappaB activation occurs following stimulation with gp120, TNF, or CD3/CD28 crosslinking, but these treatments do not activate NF-kappaB in cells deficient in caspase 8. The Casp8p43 cleavage fragment also transactivates the HIV LTR through NF-kappaB, and the absence of caspase 8 following HIV infection greatly inhibits HIV replication.Gp120 induced caspase 8 dependent NF-kappaB activation is a novel pathway of HIV replication which increases understanding of the biology of T-cell death, as well as having implications for understanding treatment and prevention of HIV infection

    Disturbed balance of expression between XIAP and Smac/DIABLO during tumour progression in renal cell carcinomas

    Get PDF
    Dysregulation of apoptosis plays an important role in tumour progression and resistance to chemotherapy. The X-linked inhibitor of apoptosis ( XIAP) is considered to be the most potent caspase inhibitor of all known inhibitor of apoptosis-family members. Only recently, an antagonist of XIAP has been identified, termed Smac/DIABLO. To explore the relevance of antiapoptotic XIAP and proapoptotic Smac/DIABLO for tumour progression in renal cell carcinomas (RCCs), we analysed XIAP and Smac/DIABLO mRNA and protein expression in the primary tumour tissue from 66 RCCs of all major histological types by quantitative real-time PCR, Western blot and ELISA. X-linked inhibitor of apoptosis and Smac/DIABLO mRNA expression was found in all RCCs. Importantly, the relative XIAP mRNA expression levels significantly increased from early (pT1) to advanced (pT3) tumour stages ( P = 0.0002) and also with tumour dedifferentiation ( P = 0.04). Western blot analysis confirmed the tumour stage-dependent increase of XIAP expression on the protein level. In contrast, mRNA and protein expression levels of Smac/DIABLO did not significantly change between early and advanced tumour stages or between low and high tumour grades. Consequently, the mRNA expression ratio between antiapoptotic XIAP and proapoptotic Smac/DIABLO markedly increased during progression from early ( pT1) to advanced ( pT3) tumour stages. Moreover, RCCs confined within the organ capsule ( pT1 and pT2) exhibited a significantly lower XIAP to Smac/DIABLO expression ratio when compared with RCCs infiltrating beyond the kidney ( pT3; P = 0.01). Thus, our investigation demonstrates that the delicate balance between XIAP and Smac/DIABLO expression is gradually disturbed during progression of RCCs, resulting in a relative increase of antiapoptotic XIAP over proapoptotic Smac/DIABLO, thereby probably contributing to the marked apoptosis resistance of RCC.OncologySCI(E)46ARTICLE71349-13579

    Pathogenic Roles of CD14, Galectin-3, and OX40 during Experimental Cerebral Malaria in Mice

    Get PDF
    An in-depth knowledge of the host molecules and biological pathways that contribute towards the pathogenesis of cerebral malaria would help guide the development of novel prognostics and therapeutics. Genome-wide transcriptional profiling of the brain tissue during experimental cerebral malaria (ECM ) caused by Plasmodium berghei ANKA parasites in mice, a well established surrogate of human cerebral malaria, has been useful in predicting the functional classes of genes involved and pathways altered during the course of disease. To further understand the contribution of individual genes to the pathogenesis of ECM, we examined the biological relevance of three molecules – CD14, galectin-3, and OX40 that were previously shown to be overexpressed during ECM. We find that CD14 plays a predominant role in the induction of ECM and regulation of parasite density; deletion of the CD14 gene not only prevented the onset of disease in a majority of susceptible mice (only 21% of CD14-deficient compared to 80% of wildtype mice developed ECM, p<0.0004) but also had an ameliorating effect on parasitemia (a 2 fold reduction during the cerebral phase). Furthermore, deletion of the galectin-3 gene in susceptible C57BL/6 mice resulted in partial protection from ECM (47% of galectin-3-deficient versus 93% of wildtype mice developed ECM, p<0.0073). Subsequent adherence assays suggest that galectin-3 induced pathogenesis of ECM is not mediated by the recognition and binding of galectin-3 to P. berghei ANKA parasites. A previous study of ECM has demonstrated that brain infiltrating T cells are strongly activated and are CD44+CD62L− differentiated memory T cells [1]. We find that OX40, a marker of both T cell activation and memory, is selectively upregulated in the brain during ECM and its distribution among CD4+ and CD8+ T cells accumulated in the brain vasculature is approximately equal

    Molecular Characterization of a Novel Intracellular ADP-Ribosyl Cyclase

    Get PDF
    Background. ADP-ribosyl cyclases are remarkable enzymes capable of catalyzing multiple reactions including the synthesis of the novel and potent intracellular calcium mobilizing messengers, cyclic ADP-ribose and NAADP. Not all ADP-ribosyl cyclases however have been characterized at the molecular level. Moreover, those that have are located predominately at the outer cell surface and thus away from their cytosolic substrates. Methodology/Principal Findings. Here we report the molecular cloning of a novel expanded family of ADP-ribosyl cyclases from the sea urchin, an extensively used model organism for the study of inositol trisphosphate-independent calcium mobilization. We provide evidence that one of the isoforms (SpARC1) is a soluble protein that is targeted exclusively to the endoplasmic reticulum lumen when heterologously expressed. Catalytic activity of the recombinant protein was readily demonstrable in crude cell homogenates, even under conditions where luminal continuity was maintained. Conclusions/Significance. Our data reveal a new intracellular location for ADP-ribosyl cyclases and suggest that production of calcium mobilizing messengers may be compartmentalized

    Western Pacific Air-Sea Interaction Study

    Get PDF
    A01: Dynamics of Atmospheric CompositionA Study on the Production and Emission of Marine-Derived Volatile Halocarbons / Y. Yokouchi, A. Ooki, S. Hashimoto and N. Itoh : 05w-pass_001.pdfMeasurements of Gaseous Peroxides in the Oceanic Lower Atmosphere / S. Hatakeyama and T. Akatsuka : 06w-pass_027.pdfPhase Partitioning of NH3 and Gas to Particle Conversion / K. Osada : 07w-pass_033.pdfNew Particle Formation of Marine Aerosols / K. Miura, H. Furutani, Y. Iwamoto, K. Nagano, H. Kobayashi, M. Mochida, H. Mukai, S. Hashimoto, M. Takami and M. Uematsu : 08w-pass_037.pdfA Study of the Chemical Processes in Aerosols and Their Impacts on the Environment Using X-ray Absorption Fine Structure Spectroscopy / Y. Takahashi, M. Higashi, T. Furukawa, T. Miyoshi, M. Fujiwara and M. Uematsu : 09w-pass_043.pdfVariability in Mineral Dust Deposition over the North Pacific and Its Potential Impact on the Ocean Productivity / H. Fukushima : 10w-pass_051.pdfAtmosphere-Ocean Interaction through Atmospheric Aerosol Particles Observed in a Single Nanoparticle Aspect / H. Furutani, J. Jinyoung and M. Uematsu : 11w-pass_061.pdfSimultaneous Measurements of Hygroscopic Property and Cloud Condensation Nucleus Activity of Aerosol Particles of Marine Biogenic Origin / M. Mochida : 12w-pass_071.pdfEruption of Mt. Kilauea Impacted Cloud Droplet and Radiation Budget over North Pacific / I. Uno, K. Eguchi and K. Yumimoto : 13w-pass_083.pdfA02: Variability of Gas Exchanges at the Air-Sea InterfaceHigh-Resolution Measurement of Volatile Organic Compounds Dissolved in Seawater Using Equilibrator Inlet-Proton Transfer Reaction-Mass Spectrometry (EI-PTR-MS) / H. Tanimoto, S. Kameyama, Y. Omori, S. Inomata and U. Tsunogai : 14w-pass_089.pdfStudy of the Production Processes of Marine Biogenic Methane and Carbonyl Sulfide Using Stable Isotope Analysis / S. Toyoda, K. Yamada, Y. Ueno, K. Koba and O. Yoshida : 15w-pass_117.pdfLong-Term Changes of Greenhouse Gases in the Ocean and Their Feedback Effects on the Climate / Y. W. Watanabe, I. Yasuda and N. Tsurushima : 16w-pass_123.pdfTemporal and Spatial Variations in Carbonate System and Air-Sea CO2 Flux in the Kuroshio and Kuroshio Extension / H. Yoshikawa-Inoue, T. Midorikawa and T. R. Takamura : 17w-pass_151.pdfA03: Dynamics of the Marine EcosystemBioavailability and Biogeochemical Processes of Trace Metals in the Surface Ocean / S. Takeda, H. Obata, A. Okubo, M. Sato and Y. Kondo : 18w-pass_163.pdfDetailed Variations in Bioactive Elements in the Surface Ocean and Their Interaction with Microbiological Processes / H. Ogawa, K. Kogure, J. Kanda, F. Hashihama and M. Suzumura : 19w-pass_177.pdfPhotoheterotrophic Process in Surface Seawater Environments / K. Hamasaki, Y. Sato-Takabe, A. Taniguchi and Y. Tada : 20w-pass_199.pdfEcological Study of Bacterial Populations Related to Biogenic Gas Transformation in Marine Environments / K. Hamasaki, R. Kaneko, A. Mouri, Y. Tada, N. Kasamatsu-Takasawa and I. Nagao : 21w-pass_203.pdfA04: Modelling of the Interaction between the Ocean and the AtmosphereModeling for Evaluation and Prediction of Effects of Short-Term Atmospheric Disturbance on Air-Sea Material Cycling / M. Fujii and A. Tanaka : 22w-pass_211.pdfRelating Phytoplankton Pnysiology to North Pacific Biogeochemistry / S. L. Smith, M. N. Aita, M. Shigemitsu and Y. Yamanaka : 23w-pass_223.pdfCoupling of Physical and Bio-Geochemical Process and Monitoring Ocean Circulation Using Data Assimilation System / Y. Ishikawa, T. Awaji, M. Ikeda and T. Toyoda : 24w-pass_237.pdfPart of "Western Pacific Air-Sea Interaction Study

    Western Pacific Air-Sea Interaction Study

    Get PDF
    A01: Dynamics of Atmospheric CompositionA Study on the Production and Emission of Marine-Derived Volatile Halocarbons / Y. Yokouchi, A. Ooki, S. Hashimoto and N. Itoh : 05w-pass_001.pdfMeasurements of Gaseous Peroxides in the Oceanic Lower Atmosphere / S. Hatakeyama and T. Akatsuka : 06w-pass_027.pdfPhase Partitioning of NH3 and Gas to Particle Conversion / K. Osada : 07w-pass_033.pdfNew Particle Formation of Marine Aerosols / K. Miura, H. Furutani, Y. Iwamoto, K. Nagano, H. Kobayashi, M. Mochida, H. Mukai, S. Hashimoto, M. Takami and M. Uematsu : 08w-pass_037.pdfA Study of the Chemical Processes in Aerosols and Their Impacts on the Environment Using X-ray Absorption Fine Structure Spectroscopy / Y. Takahashi, M. Higashi, T. Furukawa, T. Miyoshi, M. Fujiwara and M. Uematsu : 09w-pass_043.pdfVariability in Mineral Dust Deposition over the North Pacific and Its Potential Impact on the Ocean Productivity / H. Fukushima : 10w-pass_051.pdfAtmosphere-Ocean Interaction through Atmospheric Aerosol Particles Observed in a Single Nanoparticle Aspect / H. Furutani, J. Jinyoung and M. Uematsu : 11w-pass_061.pdfSimultaneous Measurements of Hygroscopic Property and Cloud Condensation Nucleus Activity of Aerosol Particles of Marine Biogenic Origin / M. Mochida : 12w-pass_071.pdfEruption of Mt. Kilauea Impacted Cloud Droplet and Radiation Budget over North Pacific / I. Uno, K. Eguchi and K. Yumimoto : 13w-pass_083.pdfA02: Variability of Gas Exchanges at the Air-Sea InterfaceHigh-Resolution Measurement of Volatile Organic Compounds Dissolved in Seawater Using Equilibrator Inlet-Proton Transfer Reaction-Mass Spectrometry (EI-PTR-MS) / H. Tanimoto, S. Kameyama, Y. Omori, S. Inomata and U. Tsunogai : 14w-pass_089.pdfStudy of the Production Processes of Marine Biogenic Methane and Carbonyl Sulfide Using Stable Isotope Analysis / S. Toyoda, K. Yamada, Y. Ueno, K. Koba and O. Yoshida : 15w-pass_117.pdfLong-Term Changes of Greenhouse Gases in the Ocean and Their Feedback Effects on the Climate / Y. W. Watanabe, I. Yasuda and N. Tsurushima : 16w-pass_123.pdfTemporal and Spatial Variations in Carbonate System and Air-Sea CO2 Flux in the Kuroshio and Kuroshio Extension / H. Yoshikawa-Inoue, T. Midorikawa and T. R. Takamura : 17w-pass_151.pdfA03: Dynamics of the Marine EcosystemBioavailability and Biogeochemical Processes of Trace Metals in the Surface Ocean / S. Takeda, H. Obata, A. Okubo, M. Sato and Y. Kondo : 18w-pass_163.pdfDetailed Variations in Bioactive Elements in the Surface Ocean and Their Interaction with Microbiological Processes / H. Ogawa, K. Kogure, J. Kanda, F. Hashihama and M. Suzumura : 19w-pass_177.pdfPhotoheterotrophic Process in Surface Seawater Environments / K. Hamasaki, Y. Sato-Takabe, A. Taniguchi and Y. Tada : 20w-pass_199.pdfEcological Study of Bacterial Populations Related to Biogenic Gas Transformation in Marine Environments / K. Hamasaki, R. Kaneko, A. Mouri, Y. Tada, N. Kasamatsu-Takasawa and I. Nagao : 21w-pass_203.pdfA04: Modelling of the Interaction between the Ocean and the AtmosphereModeling for Evaluation and Prediction of Effects of Short-Term Atmospheric Disturbance on Air-Sea Material Cycling / M. Fujii and A. Tanaka : 22w-pass_211.pdfRelating Phytoplankton Pnysiology to North Pacific Biogeochemistry / S. L. Smith, M. N. Aita, M. Shigemitsu and Y. Yamanaka : 23w-pass_223.pdfCoupling of Physical and Bio-Geochemical Process and Monitoring Ocean Circulation Using Data Assimilation System / Y. Ishikawa, T. Awaji, M. Ikeda and T. Toyoda : 24w-pass_237.pdfPart of "Western Pacific Air-Sea Interaction Study
    • …
    corecore