567 research outputs found

    Propionibacterium avidum infection following breast reduction: high morbidity from a low-virulence pathogen

    Get PDF
    Propionibacterium avidum is a common inhabitant of sebaceous glands, traditionally considered to be of low virulence and generally found on implanted foreign material. We report a rare case of P. avidum breast abscess, causing severe morbidity following breast reduction surgery. A 36-year-old woman presented with a non-painful wound discharge 3 weeks postoperatively, and was treated conservatively. She was readmitted 7 weeks postoperatively with a red and tender breast. A purulent discharging abscess was drained under ultrasound guidance. A 2-week intravenous course of amoxicillin-clavulanic acid, followed by oral replacement for a month resulted effective. Serial ultrasound imaging was useful in treatment decision-making. The infective potential of P. avidum may be underappreciated. Proximity of sutures to the axilla, tobacco smoking and the potential for resorbable sutures to host bacteria may predispose to infection, and should raise the clinician's awareness

    Neutrophils, Crucial, or Harmful Immune Cells Involved in Coronavirus Infection: A Bioinformatics Study

    Get PDF
    The latest member of the Coronaviridae family, called SARS-CoV-2, causes the Coronavirus Disease 2019 (COVID-19). The disease has caused a pandemic and is threatening global health. Similar to SARS-CoV, this new virus can potentially infect lower respiratory tract cells and can go on to cause severe acute respiratory tract syndrome, followed by pneumonia and even death in many nations. The molecular mechanism of the disease has not yet been evaluated until now. We analyzed the GSE1739 microarray dataset including 10 SARS-positive PBMC and four normal PBMC. Co-expression network analysis by WGCNA suggested that highly preserved 833 turquoise module with genes were significantly related to SARS-CoV infection. ELANE, ORM2, RETN, BPI, ARG1, DEFA4, CXCL1, and CAMP were the most important genes involved in this disease according to GEO2R analysis as well. The GO analysis demonstrated that neutrophil activation and neutrophil degranulation are the most activated biological processes in the SARS infection as well as the neutrophilia, basophilia, and lymphopenia predicted by deconvolution analysis of samples. Thus, using Serpins and Arginase inhibitors during SARS-CoV infection may be beneficial for increasing the survival of SARS-positive patients. Regarding the high similarity of SARS-CoV-2 to SARS-CoV, the use of such inhibitors might be beneficial for COVID-19 patients

    Atmospheric Thermodynamic Profiling through the Use of a Micro-Pulse Raman Lidar System: Introducing the Compact Raman Lidar MARCO

    Get PDF
    It was for a long time believed that lidar systems based on the use of high-repetition micro-pulse lasers could be effectively used to only stimulate atmospheric elastic backscatter echoes, and thus were only exploited in elastic backscatter lidar systems. Their application to stimulate rotational and roto-vibrational Raman echoes, and consequently, their exploitation in atmospheric thermodynamic profiling, was considered not feasible based on the technical specifications possessed by these laser sources until a few years ago. However, recent technological advances in the design and development of micro-pulse lasers, presently achieving high UV average powers (1–5 W) and small divergences (0.3–0.5 mrad), in combination with the use of large aperture telescopes (0.3–0.4 m diameter primary mirrors), allow one to presently develop micro-pulse laser-based Raman lidars capable of measuring the vertical profiles of atmospheric thermodynamic parameters, namely water vapor and temperature, both in the daytime and night-time. This paper is aimed at demonstrating the feasibility of these measurements and at illustrating and discussing the high achievable performance level, with a specific focus on water vapor profile measurements. The technical solutions identified in the design of the lidar system and their technological implementation within the experimental setup of the lidar prototype are also carefully illustrated and discussed

    Thermal and Cold Neutron Computed Tomography at the Los Alamos Neutron Scattering Center Using an Amorphous Silicon Detector Array

    Get PDF
    The use of the EG&G-Heimann RTM 128 [1] or dpiX FS20 [2] amorphous silicon (a-Si) detector array for thermal neutron radiography/computed tomography has proven to be a quick and efficient means of producing high quality digital radiographic images. The resolution, although not as good as film, is about 750 μm with the RTM and 127 μm with the dpiX array with a dynamic range in excess of 2800. In many respects using an amorphous silicon detector is an improvement over other techniques such as imaging with a CCD camera, using a storage phosphor plate or film radiography. Unlike a CCD camera, which is highly susceptible to radiation damage, a-Si detectors can be placed in the beam directly behind the object under examination and do not require any special optics or turning mirrors. The amorphous silicon detector also allows enough data to be acquired to construct a digital image in just a few seconds (minimum gate time 40 ms) whereas film or storage plate exposures can take many minutes and need to be digitized with a scanner. The flat panel can, therefore, acquire a complete 3D computed tomography data set in just a few tens of minutes. While a-Si detectors have been proposed for use in imaging neutron beams [3], this is the first reported implementation of such a detector for neutron imaging [4]

    Atmospheric Boundary Layer Height: Inter-Comparison of Different Estimation Approaches Using the Raman Lidar as Benchmark

    Get PDF
    This work stems from the idea of improving the capability to measure the atmospheric boundary layer height (ABLH) in variable or unstable weather conditions or in the presence of turbulence and precipitation events. A new approach based on the use of rotational and roto-vibrational Raman lidar signals is considered and tested. The traditional gradient approach based on the elastic signals at wavelength 532 nm is also considered. Lidar data collected by the University of Basilicata Raman lidar (BASIL) within the Special Observation Period 1 (SOP 1) in Cardillargues (Ceveninnes-CV supersite) during the Hydrological Cycle in the Mediterranean Experiment (HyMeX) were used. Our attention was specifically focused on the data collected during the period 16-21 October 2012. ABLH estimates from the Raman lidar were compared against other innovative methods, such as the recently established Morphological Image Processing Approach (MIPA) and the temperature gradient technique applied to potential temperature obtained from radio-sounding data. For each considered methodology, a statistical analysis was carried out. In general, the results from the different methodologies are in good agreement. Some deviations have been observed in correspondence with quite unstable weather conditions

    How to better exploit the use of LCA analysis for Ultra High Performance Concrete (UHPC) through a constitutive law which integrates chloride and sulfate attack

    Get PDF
    Structural applications of advanced cementitious materials such as Ultra High Performance Concrete (UHPC) have been already assessed in harsh exposure conditions with presence of chlorides or sulfates. Nevertheless, the limited availability of design standards has not favoured so far a widespread use of these materials. Moreover, previous studies employed a constitutive model only partially representative of the real behavior of such materials when exposed to aggressive conditions. Therefore, this work, employing a “scenario dependent” constitutive law, estimates the serviceability limit state in correspondence of which it is needed to carry out the maintenance activities and investigates, through the Life Cycle Assessment (LCA) methodology, the ecological and economic profile of a UHPC water basin structure subjected to chloride and sulfate attack. The CML impact assessment method has been employed for the specific purpose to compare such structure to one made with ordinary reinforced concrete (ORC) using as system boundary the A1-B7 stages indicated in EN 15804

    LCA assessment related to the evolution of the earthquake performance of a strategic structure

    Get PDF
    Several buildings and infrastructures, located in urban areas, are identified as strategic in the case of an earthquake event. This is the case of a water treatment plant which is currently built in Genoa, Italy, and which has been assessed for the scope of this research. Since the structure has been designed following the seismic design prescriptions, this work aims to provide a preliminary assessment of how the degradation mechanisms do affect its earthquake response. To this purpose, both chloride attack and carbonation are taken into account as main degradation mechanisms. Moreover, due to the importance of the water treatment plant, to develop a realistic Life Cycle Assessment (LCA) analysis, the earthquake resistance of the structure and its evolution over time as a function of the aforesaid degradation mechanisms, have been accounted as Serviceability Limit State to estimate the frequency of the maintenance activities needed in a timeframe of 100 years

    The unresolved case of sacral chordoma: from misdiagnosis to challenging surgery and medical therapy resistance.

    Get PDF
    PURPOSE: A sacral chordoma is a rare, slow-growing, primary bone tumor, arising from embryonic notochordal remnants. Radical surgery is the only hope for cure. The aim of our present study is to analyse our experience with the challenging treatment of this rare tumor, to review current treatment modalities and to assess the outcome based on R status. METHODS: Eight patients were treated in our institution between 2001 and 2011. All patients were discussed by a multidisciplinary tumor board, and an en bloc surgical resection by posterior perineal access only or by combined anterior/posterior accesses was planned based on tumor extension. RESULTS: Seven patients underwent radical surgery, and one was treated by using local cryotherapy alone due to low performance status. Three misdiagnosed patients had primary surgery at another hospital with R1 margins. Reresection margins in our institution were R1 in two and R0 in one, and all three recurred. Four patients were primarily operated on at our institution and had en bloc surgery with R0 resection margins. One had local recurrence after 18 months. The overall morbidity rate was 86% (6/7 patients) and was mostly related to the perineal wound. Overall, 3 out of 7 resected patients were disease-free at a median follow-up of 2.9 years (range, 1.6-8.0 years). CONCLUSION: Our experience confirms the importance of early correct diagnosis and of an R0 resection for a sacral chordoma invading pelvic structures. It is a rare disease that requires a challenging multidisciplinary treatment, which should ideally be performed in a tertiary referral center

    Free Versus Pedicled Anterolateral Thigh Flap for Abdominal Wall Reconstruction.

    Get PDF
    Large full thickness abdominal wall defects following malignancies can be a reconstructive challenge. The purpose of this study was to analyze long-term outcomes and complications following abdominal wall reconstruction using composite antero-lateral thigh (ALT) flaps. The study retrospectively investigated 16 consecutive patients who underwent abdominal wall reconstruction with autologous flap between May 2003 and March 2018. Volumetric flap analysis was used to assess flap atrophy over time, evaluating the role of denervation and reinnervation. The long-term outcome was assessed to compare the two groups (free vs. pedicled ALT flap reconstructions). All flaps successfully covered the defects. We found a significant increase in flap resorption in free flaps when compared to pedicled ones. Abdominal bulging was seen in 3 out of 16 (19%) patients after more than 12 months follow-up, in close correlation with mesh absence. Free flaps were shown to be equally effective as their pedicled counterparts, without significant increase in complication rate

    The Genetic Germline Background of Single and Multiple Primary Melanomas

    Get PDF
    Background: Melanoma has a complex molecular background and multiple genes are involved in its development and progression. The advent of next generation sequencing platforms has enabled the evaluation of multiple genes at a time, thus unraveling new insights into the genetics of melanoma. We investigated a set of germline mutations able to discriminate the development of multiple primary melanomas (MPM) vs. single site primary melanomas (SPM) using a targeted next generation sequencing panel. Materials and Methods: A total of 39 patients, 20 with SPM and 19 with MPM, were enrolled in our study. Next generation analysis was carried out using a custom targeted sequencing panel that included 32 genes known to have a role in several carcinogenic pathways, such as those involved in DNA repair, pigmentation, regulation of kinases, cell cycle control and senescence. Results: We found a significant correlation between PIK3CA:p.I391M and MPMs, compared to SPMs, p = 0.031 and a trend for the association between CYP1B1: p.N453S and SPMs, compared to MPMs (p = 0.096). We also found that both subgroups shared a spectrum of 9 alterations in 8 genes (CYP1B1: p.N453S, BAP1: p.C39fs, PIK3CA: p.I391M, CDKAL1: c.1226_1227TG, POLE: p.V1161fs, OCA2: p.R419Q, OCA2: p.R305W, MC1R: p.V60L, MGMT: p.L115F), which suggested that these genes may play a role in melanoma development. Conclusions: In conclusion, despite the small cohort of patients, we found that germline mutations, such as those of PIK3CAand CYP1B1, might contribute to the differential development of SPM and MPM
    corecore