9 research outputs found
Nanocrystallization and Amorphization Induced by Reactive Nitrogen Sputtering in Iron and Permalloy
Thin films of iron and permalloy Ni80Fe20 were prepared using an Ar+N2
mixture with magnetron sputtering technique at ambient temperature. The
nitrogen partial pressure, during sputtering process was varied in the range of
0 to 100%, keeping the total gas flow at constant. At lower nitrogen pressures
RN2<33% both Fe and NiFe, first form a nanocrystalline structure and an
increase in nitrogen partail pressure results in formation of an amorphous
structure. At intermediate nitrogen partial pressures, nitrides of Fe and NiFe
were obtained while at even higher nitrogen partial pressures, nitrides
themselves became nanocrystalline or amorphous. The surface, structural and
magnetic properties of the deposited films were studied using x-ray reflection
and diffraction, transmission electron microscopy, polarized neutron
reflectivity and using a DC extraction magnetometer. The growth behavior for
amorphous film was found different as compared with poly or nanocrystalline
films. The soft-magnetic properties of FeN were improved on nanocrystallization
while those of NiFeN were degraded. A mechanism inducing nanocrystallization
and amorphization in Fe and NiFe due to reactive nitrogen sputtering is
discussed in the present article.Comment: 13 Pages, 15 Figure
Isotropic magnetization response of electrodeposited nanocrystalline Ni–W alloy nanowire arrays
Isotropic magnetization response was demonstrated in electrodeposited nanocrystalline Ni–15 % W alloy nanowire arrays, which can be applied to nanoscale magnetic field sensors. The Ni–W alloy nanowire arrays were electrochemically synthesized on a nanochannel template electrode from an aqueous electrolytic solution. X-ray and electron diffraction patterns revealed that Ni–15 % W alloy deposits were composed of ultrafine crystal grains with a supersaturated solid solution phase. The magnetization of the Ni–15 % W alloy thin films reached saturation at around 2.5 kOe in a perpendicular direction to the film plane, whereas the pure Ni thin films hardly magnetized in the perpendicular direction. On the contrary, Ni–15 % W alloy nanowire arrays were easily magnetized, and reach saturation at around 1.0 kOe, even in a perpendicular direction to the array film plane that corresponds to the long-axis direction of the alloy nanowires