421 research outputs found

    Band structure and optical properties of germanium sheet polymers

    Get PDF
    The band structure of H-terminated Ge sheet polymers is calculated using density-functional theory in the local density approximation and compared to the optical properties of epitaxial polygermyne layers as determined from reflection, photoluminescence, and photoluminescence excitation measurements. A direct band gap of 1.7 eV is predicted and a near resonant excitation of the photoluminescence is observed experimentally close to this energy

    Long-range potential fluctuations and 1/f noise in hydrogenated amorphous silicon

    Full text link
    We present a microscopic theory of the low-frequency voltage noise (known as "1/f" noise) in micrometer-thick films of hydrogenated amorphous silicon. This theory traces the noise back to the long-range fluctuations of the Coulomb potential produced by deep defects, thereby predicting the absolute noise intensity as a function of the distribution of defect activation energies. The predictions of this theory are in very good agreement with our own experiments in terms of both the absolute intensity and the temperature dependence of the noise spectra.Comment: 8 pages, 3 figures, several new parts and one new figure are added, but no conceptual revision

    Characterization of Martian Convective Vortices Using InSight's Seismic and Meteorological Data

    Get PDF
    From Nov. 2018 to Dec. 2022, NASA's InSight (Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport) was operated on Mars to conduct seismic and meteorological observations. InSight¿s long quasicontinuous and high-temporal sampling observations have significantly improved our understandings of the inner structure, seismicity, and meteorological phenomena of the red planet (e.g., [1]-[8]). Prominent among these are convective vortices or dust devils

    Effect of hydrogen on ground state structures of small silicon clusters

    Full text link
    We present results for ground state structures of small Sin_{n}H (2 \leq \emph{n} \leq 10) clusters using the Car-Parrinello molecular dynamics. In particular, we focus on how the addition of a hydrogen atom affects the ground state geometry, total energy and the first excited electronic level gap of an Sin_{n} cluster. We discuss the nature of bonding of hydrogen in these clusters. We find that hydrogen bonds with two silicon atoms only in Si2_{2}H, Si3_{3}H and Si5_{5}H clusters, while in other clusters (i.e. Si4_{4}H, Si6_{6}H, Si7_{7}H, Si8_{8}H, Si9_{9}H and Si10_{10}H) hydrogen is bonded to only one silicon atom. Also in the case of a compact and closed silicon cluster hydrogen bonds to the cluster from outside. We find that the first excited electronic level gap of Sin_{n} and Sin_{n}H fluctuates as a function of size and this may provide a first principles basis for the short-range potential fluctuations in hydrogenated amorphous silicon. Our results show that the addition of a single hydrogen can cause large changes in the electronic structure of a silicon cluster, though the geometry is not much affected. Our calculation of the lowest energy fragmentation products of Sin_{n}H clusters shows that hydrogen is easily removed from Sin_{n}H clusters.Comment: one latex file named script.tex including table and figure caption. Six postscript figure files. figure_1a.ps and figure_1b.ps are files representing Fig. 1 in the main tex

    Performance of prototypes for the ALICE electromagnetic calorimeter

    Full text link
    The performance of prototypes for the ALICE electromagnetic sampling calorimeter has been studied in test beam measurements at FNAL and CERN. A 4×44\times4 array of final design modules showed an energy resolution of about 11% /E(GeV)\sqrt{E(\mathrm{GeV})} \oplus 1.7 % with a uniformity of the response to electrons of 1% and a good linearity in the energy range from 10 to 100 GeV. The electromagnetic shower position resolution was found to be described by 1.5 mm \oplus 5.3 mm /E(GeV)\sqrt{E \mathrm{(GeV)}}. For an electron identification efficiency of 90% a hadron rejection factor of >600>600 was obtained.Comment: 10 pages, 10 figure

    Exciton bimolecular annihilation dynamics in supramolecular nanostructures of conjugated oligomers

    Get PDF
    We present femtosecond transient absorption measurements on π\pi-conjugated supramolecular assemblies in a high pump fluence regime. Oligo(\emph{p}-phenylenevinylene) monofunctionalized with ureido-\emph{s}-triazine (MOPV) self-assembles into chiral stacks in dodecane solution below 75^{\circ}C at a concentration of 4×1044\times 10^{-4} M. We observe exciton bimolecular annihilation in MOPV stacks at high excitation fluence, indicated by the fluence-dependent decay of 111^1Bu_{u}-exciton spectral signatures, and by the sub-linear fluence dependence of time- and wavelength-integrated photoluminescence (PL) intensity. These two characteristics are much less pronounced in MOPV solution where the phase equilibrium is shifted significantly away from supramolecular assembly, slightly below the transition temperature. A mesoscopic rate-equation model is applied to extract the bimolecular annihilation rate constant from the excitation fluence dependence of transient absorption and PL signals. The results demonstrate that the bimolecular annihilation rate is very high with a square-root dependence in time. The exciton annihilation results from a combination of fast exciton diffusion and resonance energy transfer. The supramolecular nanostructures studied here have electronic properties that are intermediate between molecular aggregates and polymeric semiconductors
    corecore