209 research outputs found

    Injury patterns of South African provincial cricket players over two seasons

    Get PDF
    Objective. To determine the incidence and nature of injury patternsin elite cricketers over two seasons.Methods. Physiotherapists and/or doctors working with 4 provincial teams completed a questionnaire for each cricketer who presented with an injury during the 2004 - 2005 (S1) and 2005 - 2006 (S2) cricket seasons. This was done to determine: (i) the anatomical site of injury; (ii) the month of injury during the season; (iii) the diagnosis using the OSCIS injury classification system; (iv) the mechanism of injury; (v) whether it was a recurrence of a previous injury; (vi) whether the injury had recurred again during the season; and (vii) biographical data.Results. The results showed that 180 injuries (S1 – 84; S2 – 96)were sustained. On average the teams spent 2 472 hours on matches, 4 148 on practices and 1 612 on fitness training during the two-season period. The injury prevalence was 8% per match, while the injury incidence was 30/10 000 hours of match, practice and training time, with the match incidence being 74 injuries/ 10 000 hours and the training incidence 15 injuries/10 000 hours. Bowling (29%), fielding and wicket-keeping (27%) and batting (19%) accounted for the majority of injuries. The occurrence of injuries was predominantly to the lower limbs (S1 – 45%; S2 – 42%),back and trunk (S1 – 19%; S2 – 19%), upper limbs (S1 – 19%; S2 – 22%), head and neck (S1 – 6%; S2 – 3%), and related to illnesses (S1 – 11%; S2 – 14%). The injuries occurred primarily during first-class matches (39%), limited-overs matches (22%), and practices (17%), and some were of gradual onset (20%). Acute injuries comprised 78% of injuries. The majority of injuries were first-time injuries (76%), with 11% and 14% recurrent injuries from the previous and current seasons, respectively. The major injuries during S1 were haematomas (19%), muscle strains(17%) and other trauma (14%), while during S2 the injuries were primarily muscle strains (16%), other trauma (20%), tendinopathy (16%) and acute sprains (15%). The primary mechanisms of injury occurred in the delivery stride when bowling (19%) and overbowling (7%), on impact by the ball when batting (11%), and on sliding to field the ball (6%).Conclusion. The results indicate a pattern of cause of injury, withthe fast bowler most likely to sustain an acute injury to the soft tissues of the lower limb while participating in matches and practices during the early part of the season

    Adjuvant radiotherapy after salvage surgery for melanoma recurrence in a node field following a previous lymph node dissection

    Get PDF
    Background and Objectives: Adjuvant radiotherapy (RT) can be given to melanoma patients following salvage surgery for node field recurrence after a previous regional node dissection, but the value of this treatment strategy is poorly documented. This study evaluated long-term node field control and survival of patients treated in this way in an era before effective adjuvant systemic therapy became available. Methods: Data for 76 patients treated between 1990 and 2011 were extracted from an institutional database. Baseline patient characteristics, treatment details and oncological outcomes were analysed. Results: Adjuvant RT with conventional fractionation (median dose 48 Gy in 20 fractions) was given to 43 patients (57%) and hypofractionated RT (median dose 33 Gy in 6 fractions) to 33 patients (43%). The 5-year node field control rate was 70%, 5-year recurrence-free survival 17%, 5-year melanoma-specific survival 26% and 5-year overall survival 25%. Conclusions: Salvage surgery with adjuvant RT achieved node field control in 70% of melanoma patients with node field recurrence following a prior node dissection. However, disease progression at distant sites was common and survival outcomes were poor. Prospective data will be required to assess outcomes for contemporary combinations of surgery, adjuvant RT and systemic therapy.</p

    High potential for weathering and climate effects of non-vascular vegetation in the Late Ordovician

    Get PDF
    It has been hypothesized that predecessors of today’s bryophytes significantly increased global chemical weathering in the Late Ordovician, thus reducing atmospheric CO2 concentration and contributing to climate cooling and an interval of glaciations. Studies that try to quantify the enhancement of weathering by non-vascular vegetation, however, are usually limited to small areas and low numbers of species, which hampers extrapolating to the global scale and to past climatic conditions. Here we present a spatially explicit modelling approach to simulate global weathering by non-vascular vegetation in the Late Ordovician. We estimate a potential global weathering flux of 2.8 (km3 rock) yr−1, defined here as volume of primary minerals affected by chemical transformation. This is around three times larger than today’s global chemical weathering flux. Moreover, we find that simulated weathering is highly sensitive to atmospheric CO2 concentration. This implies a strong negative feedback between weathering by non-vascular vegetation and Ordovician climate

    p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis.

    Get PDF
    The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterized. Mutations in TP53 occur infrequently, yet the TP53 apoptotic pathway is often abrogated. This may result from alterations in TP53 family members, including the TP53 homologue TP63. Here we demonstrate that TP63 has an antiapoptotic role in melanoma and is responsible for mediating chemoresistance. Although p63 was not expressed in primary melanocytes, up-regulation of p63 mRNA and protein was observed in melanoma cell lines and clinical samples, providing the first evidence of significant p63 expression in this lineage. Upon genotoxic stress, endogenous p63 isoforms were stabilized in both nuclear and mitochondrial subcellular compartments. Our data provide evidence of a physiological interaction between p63 with p53 whereby translocation of p63 to the mitochondria occurred through a codependent process with p53, whereas accumulation of p53 in the nucleus was prevented by p63. Using RNA interference technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance, revealing a novel oncogenic role for p63 in melanoma cells. Furthermore, expression of p63 in both primary and metastatic melanoma clinical samples significantly correlated with melanoma-specific deaths in these patients. Ultimately, these observations provide a possible explanation for abrogation of the p53-mediated apoptotic pathway in melanoma, implicating novel approaches aimed at sensitizing melanoma to therapeutic agents

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    • …
    corecore