14 research outputs found

    On the beneficial effect of noise in vertex localization

    Get PDF
    A theoretical and experimental analysis related to the effect of noise in the task of vertex identication in unknown shapes is presented. Shapes are seen as real functions of their closed boundary. An alternative global perspective of curvature is examined providing insight into the process of noise- enabled vertex localization. The analysis reveals that noise facilitates in the localization of certain vertices. The concept of noising is thus considered and a relevant global method for localizing Global Vertices is investigated in relation to local methods under the presence of increasing noise. Theoretical analysis reveals that induced noise can indeed help localizing certain vertices if combined with global descriptors. Experiments with noise and a comparison to localized methods validate the theoretical results

    Optimizing optics and imaging for pattern recognition based screening tasks

    No full text
    We present a method for simulating lower quality images starting from higher quality ones, based on acquired image pairs from different optical setups. The method does not require estimates of point (or line) spread functions of the system, but utilizes the relative transfer function derived from images of real specimen of interest in the observed application. Thanks to the use of a larger number of real specimen, excellent stability and robustness of the method is achieved. The intended use is exploring the influence of image quality on features and classification accuracy in pattern recognition based screening tasks. Visual evaluation of the obtained images strongly confirms usefulness of the method. The approach is quantitatively evaluated by observing stability of feature values, proven useful for PAP-smear classification, between synthetic and real images from seven different microscope setups. The evaluation shows that features from the synthetically generated lower resolution images are as similar to features from real images at that resolution, as features from two different images of the same specimen, taken at the same low resolution, are to each other
    corecore