169 research outputs found
Review of EEG and ERP studies of extraversion personality for baseline and cognitive tasks
According to psychological studies, the most fundamental personality is the extraversion personality. Most studies looking at differences between extroverts and introverts are pen and paper based studies. However, in a few studies, electrophysiological signals were involved. In this paper, we reviewed studies examining extraversion personality using electroencephalography (EEG) and event-related potentials (ERP). It was found that some of the EEG studies claimed that extroverts and introverts can be differentiated using baseline EEG, while some others claimed otherwise. Conflicting findings were also observed in the ERP studies; higher/lower P300 amplitude in extroverts compared to that of introverts in visual stimuli tasks. These various findings are probably due to differences in their experimental protocols, sample size, or age of subjects. Other possible reasons include no consideration given on the main feature of extraversion and the studies only focused on EEG power spectral analysis. We are thus suggesting for future investigations to involve the main feature such as sociability and/or to incorporate more EEG features in the analysis to produce more robust and reliable results. This review constitutes a guidance for research on brain-related conditions of extroverts and introverts and shall be useful in many areas
Specific Roles of XRCC4 Paralogs PAXX and XLF during V(D)J Recombination.
Paralog of XRCC4 and XLF (PAXX) is a member of the XRCC4 superfamily and plays a role in nonhomologous end-joining (NHEJ), a DNA repair pathway critical for lymphocyte antigen receptor gene assembly. Here, we find that the functions of PAXX and XLF in V(D)J recombination are masked by redundant joining activities. Thus, combined PAXX and XLF deficiency leads to an inability to join RAG-cleaved DNA ends. Additionally, we demonstrate that PAXX function in V(D)J recombination depends on its interaction with Ku. Importantly, we show that, unlike XLF, the role of PAXX during the repair of DNA breaks does not overlap with ATM and the RAG complex. Our findings illuminate the role of PAXX in V(D)J recombination and support a model in which PAXX and XLF function during NHEJ repair of DNA breaks, whereas XLF, the RAG complex, and the ATM-dependent DNA damage response promote end joining by stabilizing DNA ends.Cancer Research UK (Grant IDs: C6/A18796, C6946/A14492, C6/A18796), European Research Council (Grant ID: 310917), Wellcome Trust (Grant ID: WT092096), University of Cambridge, Institut PasteurThis is the final version of the article. It first appeared from Elsevier (Cell Press) via http://dx.doi.org/10.1016/j.celrep.2016.08.06
Ensemble evaluation of hydrological model hypotheses
It is demonstrated for the first time how model parameter, structural and data uncertainties can be accounted for explicitly and simultaneously within the Generalized Likelihood Uncertainty Estimation (GLUE) methodology. As an example application, 72 variants of a single soil moisture accounting store are tested as simplified hypotheses of runoff generation at six experimental grassland field-scale lysimeters through model rejection and a novel diagnostic scheme. The fields, designed as replicates, exhibit different hydrological behaviors which yield different model performances. For fields with low initial discharge levels at the beginning of events, the conceptual stores considered reach their limit of applicability. Conversely, one of the fields yielding more discharge than the others, but having larger data gaps, allows for greater flexibility in the choice of model structures. As a model learning exercise, the study points to a âleakingâ of the fields not evident from previous field experiments. It is discussed how understanding observational uncertainties and incorporating these into model diagnostics can help appreciate the scale of model structural error
Human-water interface in hydrological modeling: Current status and future directions
Over the last decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes at an unprecedented scale. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g., irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of large-scale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs are incorporating human impacts on hydrological cycle, yet human representations in hydrological models remain challenging. In this paper we provide a synthesis of progress in the development and application of human impact modeling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human-water interface in hydrological models
Albumin administration in septic shock-Protocol for post-hoc analyses of data from a multicentre RCT.
BACKGROUND
Intravenous (IV) albumin is suggested for patients with septic shock who have received large amounts of IV crystalloids; a conditional recommendation based on moderate certainty of evidence. Clinical variation in the administration of IV albumin in septic shock may exist according to patient characteristics and location.
METHODS
This is a protocol and statistical analysis plan for a post-hoc secondary study of the Conservative versus Liberal Approach to Fluid Therapy of Septic Shock in Intensive Care (CLASSIC) RCT of 1554 adult ICU patients with septic shock. We will assess if specific baseline characteristics or trial site are associated with the administration of IV albumin during ICU stay using Cox models with competing events. All models will be adjusted for the treatment allocation in CLASSIC (restrictive vs. standard IV fluid), and all analyses will consider competing events (death, ICU discharge and loss-to-follow-up). We will present results as hazard ratios with 95% confidence intervals and p-values for the associations of baseline characteristics or site with IV albumin administration. Between-group differences (interactions) will be assessed using p-values from likelihood ratio tests. All results will be considered exploratory only.
DISCUSSION
This secondary study of the CLASSIC RCT may yield important insight into potential practice variation in the administration of albumin in septic shock
Restrictive versus standard IV fluid therapy in adult ICU patients with septic shock-Bayesian analyses of the CLASSIC trial.
BACKGROUND
The CLASSIC trial assessed the effects of restrictive versus standard intravenous (IV) fluid therapy in adult intensive care unit (ICU) patients with septic shock. This pre-planned study provides a probabilistic interpretation and evaluates heterogeneity in treatment effects (HTE).
METHODS
We analysed mortality, serious adverse events (SAEs), serious adverse reactions (SARs) and days alive without life-support within 90âdays using Bayesian models with weakly informative priors. HTE on mortality was assessed according to five baseline variables: disease severity, vasopressor dose, lactate levels, creatinine values and IV fluid volumes given before randomisation.
RESULTS
The absolute difference in mortality was 0.2%-points (95% credible interval: -5.0 to 5.4; 47% posterior probability of benefit [risk difference <0.0%-points]) with restrictive IV fluid. The posterior probabilities of benefits with restrictive IV fluid were 72% for SAEs, 52% for SARs and 61% for days alive without life-support. The posterior probabilities of no clinically important differences (absolute risk difference â€2%-points) between the groups were 56% for mortality, 49% for SAEs, 90% for SARs and 38% for days alive without life-support. There was 97% probability of HTE for previous IV fluid volumes analysed continuously, that is, potentially relatively lower mortality of restrictive IV fluids with higher previous IV fluids. No substantial evidence of HTE was found in the other analyses.
CONCLUSION
We could not rule out clinically important effects of restrictive IV fluid therapy on mortality, SAEs or days alive without life-support, but substantial effects on SARs were unlikely. IV fluids given before randomisation might interact with IV fluid strategy
Humanâwater interface in hydrological modelling: current status and future directions
Over recent decades, the global population has been rapidly increasing and human activities have altered terrestrial water fluxes to an unprecedented extent. The phenomenal growth of the human footprint has significantly modified hydrological processes in various ways (e.g. irrigation, artificial dams, and water diversion) and at various scales (from a watershed to the globe). During the early 1990s, awareness of the potential for increased water scarcity led to the first detailed global water resource assessments. Shortly thereafter, in order to analyse the human perturbation on terrestrial water resources, the first generation of largescale hydrological models (LHMs) was produced. However, at this early stage few models considered the interaction between terrestrial water fluxes and human activities, including water use and reservoir regulation, and even fewer models distinguished water use from surface water and groundwater resources. Since the early 2000s, a growing number of LHMs have incorporated human impacts on the hydrological cycle, yet the representation of human activities in hydrological models remains challenging. In this paper we provide a synthesis of progress in the development and application of human impact modelling in LHMs. We highlight a number of key challenges and discuss possible improvements in order to better represent the human-water interface in hydrological models
Advancing catchment hydrology to deal with predictions under change
Throughout its historical development, hydrology as an earth science, but especially as a problem-centred engineering discipline has largely relied (quite successfully) on the assumption of stationarity. This includes assuming time invariance of boundary conditions such as climate, system configurations such as land use, topography and morphology, and dynamics such as flow regimes and flood recurrence at different spatio-temporal aggregation scales. The justification for this assumption was often that when compared with the temporal, spatial, or topical extent of the questions posed to hydrology, such conditions could indeed be considered stationary, and therefore the neglect of certain long-term non-stationarities or feedback effects (even if they were known) would not introduce a large error. However, over time two closely related phenomena emerged that have increasingly reduced the general applicability of the stationarity concept: the first is the rapid and extensive global changes in many parts of the hydrological cycle, changing formerly stationary systems to transient ones. The second is that the questions posed to hydrology have become increasingly more complex, requiring the joint consideration of increasingly more (sub-) systems and their interactions across more and longer timescales, which limits the applicability of stationarity assumptions. Therefore, the applicability of hydrological concepts based on stationarity has diminished at the same rate as the complexity of the hydrological problems we are confronted with and the transient nature of the hydrological systems we are dealing with has increased. The aim of this paper is to present and discuss potentially helpful paradigms and theories that should be considered as we seek to better understand complex hydrological systems under change. For the sake of brevity we focus on catchment hydrology. We begin with a discussion of the general nature of explanation in hydrology and briefly review the history of catchment hydrology. We then propose and discuss several perspectives on catchments: as complex dynamical systems, self-organizing systems, co-evolving systems and open dissipative thermodynamic systems. We discuss the benefits of comparative hydrology and of taking an information-theoretic view of catchments, including the flow of information from data to models to predictions. In summary, we suggest that these perspectives deserve closer attention and that their synergistic combination can advance catchment hydrology to address questions of change
- âŠ