3,640 research outputs found

    The Infrared Imaging Spectrograph (IRIS) for TMT: the atmospheric dispersion corrector

    Get PDF
    We present a conceptual design for the atmospheric dispersion corrector (ADC) for TMT's Infrared Imaging Spectrograph (IRIS). The severe requirements of this ADC are reviewed, as are limitations to observing caused by uncorrectable atmospheric effects. The requirement of residual dispersion less than 1 milliarcsecond can be met with certain glass combinations. The design decisions are discussed and the performance of the design ADC is described. Alternative options and their performance tradeoffs are also presented.Comment: SPIE Astronomical Instrumentation 201

    Breaking the Disk/Halo Degeneracy with Gravitational Lensing

    Get PDF
    The degeneracy between the disk and the dark matter contribution to galaxy rotation curves remains an important uncertainty in our understanding of disk galaxies. Here we discuss a new method for breaking this degeneracy using gravitational lensing by spiral galaxies, and apply this method to the spiral lens B1600+434 as an example. The combined image and lens photometry constraints allow models for B1600+434 with either a nearly singular dark matter halo, or a halo with a sizable core. A maximum disk model is ruled out with high confidence. Further information, such as the circular velocity of this galaxy, will help break the degeneracies. Future studies of spiral galaxy lenses will be able to determine the relative contribution of disk, bulge, and halo to the mass in the inner parts of galaxies.Comment: Replaced with minor revisions, a typo fixed, and reference added; 21 pages, 8 figures, ApJ accepte

    Applying dissipative dynamical systems to pseudorandom number generation: Equidistribution property and statistical independence of bits at distances up to logarithm of mesh size

    Full text link
    The behavior of a family of dissipative dynamical systems representing transformations of two-dimensional torus is studied on a discrete lattice and compared with that of conservative hyperbolic automorphisms of the torus. Applying dissipative dynamical systems to generation of pseudorandom numbers is shown to be advantageous and equidistribution of probabilities for the sequences of bits can be achieved. A new algorithm for generating uniform pseudorandom numbers is proposed. The theory of the generator, which includes proofs of periodic properties and of statistical independence of bits at distances up to logarithm of mesh size, is presented. Extensive statistical testing using available test packages demonstrates excellent results, while the speed of the generator is comparable to other modern generators.Comment: 6 pages, 3 figures, 3 table

    A new species in the major malaria vector complex sheds light on reticulated species evolution

    Get PDF
    Complexes of closely related species provide key insights into the rapid and independent evolution of adaptive traits. Here, we described and studied Anopheles fontenillei sp.n., a new species in the Anopheles gambiae complex that we recently discovered in the forested areas of Gabon, Central Africa. Our analysis placed the new taxon in the phylogenetic tree of the An. gambiae complex, revealing important introgression events with other members of the complex. Particularly, we detected recent introgression, with Anopheles gambiae and Anopheles coluzzii, of genes directly involved in vectorial capacity. Moreover, genome analysis of the new species allowed us to clarify the evolutionary history of the 3La inversion. Overall, An. fontenillei sp.n. analysis improved our understanding of the relationship between species within the An. gambiae complex, and provided insight into the evolution of vectorial capacity traits that are relevant for the successful control of malaria in Africa

    Recovering 3D structural properties of galaxies from SDSS-like photometry

    Full text link
    Because of the 3D nature of galaxies, an algorithm for constructing spatial density distribution models of galaxies on the basis of galaxy images has many advantages over surface density distribution approximations. We present a method for deriving spatial structure and overall parameters of galaxies from images and estimate its accuracy and derived parameter degeneracies on a sample of idealised model galaxies. The test galaxies consist of a disc-like component and a spheroidal component with varying proportions and properties. Both components are assumed to be axially symmetric and coplanar. We simulate these test galaxies as if observed in the SDSS project through ugriz filters, thus gaining a set of realistically imperfect images of galaxies with known intrinsic properties. These artificial SDSS galaxies were thereafter remodelled by approximating the surface brightness distribution with a 2D projection of a bulge+disc spatial distribution model and the restored parameters were compared to the initial ones. Down to the r-band limiting magnitude 18, errors of the restored integral luminosities and colour indices remain within 0.05 mag and errors of the luminosities of individual components within 0.2 mag. Accuracy of the restored bulge-to-disc ratios (B/D) is within 40% in most cases, and becomes worse for galaxies with low B/D, but the general balance between bulges and discs is not shifted systematically. Assuming that the intrinsic disc axial ratio is < 0.3, the inclination angles can be estimated with errors < 5deg for most of the galaxies with B/D < 2 and with errors < 15deg up to B/D = 6. Errors of the recovered sizes of the galactic components are below 10% in most cases. In general, models of disc components are more accurate than models of spheroidal components for geometrical reasons.Comment: 15 pages, 13 figures, accepted for publication in RA

    Glibenclamide—10-h Treatment Window in a Clinically Relevant Model of Stroke

    Get PDF
    Glibenclamide improves outcomes in rat models of stroke, with treatment as late as 6 h after onset of ischemia shown to be beneficial. Because the molecular target of glibenclamide, the sulfonylurea receptor 1 (Sur1)-regulated NCCa-ATP channel, is upregulated de novo by a complex transcriptional mechanism, and the principal pathophysiological target, brain swelling, requires hours to develop, we hypothesized that the treatment window would exceed 6 h. We studied a clinically relevant rat model of stroke in which middle cerebral artery occlusion (75% < reduction in LDF signal ≤90%) was produced using an intra-arterial occluder. Recanalization was obtained 4.5 h later by removing the occluder. At that time, we administered recombinant tissue plasminogen activator (rtPA; 0.9 mg/kg IV over 30 min). Immunolabeling showed modest expression of Sur1 5 h after onset of ischemia, with expression increasing 7- to 11-fold (P < 0.01) by 24 h. Rats were administered either vehicle or glibenclamide (10 μg/kg IP loading dose plus 200 ng/h by constant subcutaneous infusion) beginning 4.5 or 10 h after onset of ischemia. In rats treated at 4.5 or 10 h, glibenclamide significantly reduced hemispheric swelling at 24 h from (mean ± SEM) 14.7 ± 1.5% to 8.1 ± 1.6% or 8.8 ± 1.1% (both P < 0.01), respectively, and significantly reduced 48-h mortality from 53% to 17% or 12% (both P < 0.01), and improved Garcia scores at 48 h from 3.8 ± 0.62 to 7.6 ± 0.70 or 8.4 ± 0.74 (both P < 0.01). We conclude that, in a clinically relevant model of stroke, the treatment window for glibenclamide extends to 10 h after onset of ischemia

    Improving Sparse Representation-Based Classification Using Local Principal Component Analysis

    Full text link
    Sparse representation-based classification (SRC), proposed by Wright et al., seeks the sparsest decomposition of a test sample over the dictionary of training samples, with classification to the most-contributing class. Because it assumes test samples can be written as linear combinations of their same-class training samples, the success of SRC depends on the size and representativeness of the training set. Our proposed classification algorithm enlarges the training set by using local principal component analysis to approximate the basis vectors of the tangent hyperplane of the class manifold at each training sample. The dictionary in SRC is replaced by a local dictionary that adapts to the test sample and includes training samples and their corresponding tangent basis vectors. We use a synthetic data set and three face databases to demonstrate that this method can achieve higher classification accuracy than SRC in cases of sparse sampling, nonlinear class manifolds, and stringent dimension reduction.Comment: Published in "Computational Intelligence for Pattern Recognition," editors Shyi-Ming Chen and Witold Pedrycz. The original publication is available at http://www.springerlink.co

    A road map for the generation of a near-infrared guide star catalog for thirty meter telescope observations

    Get PDF
    The near-infrared instruments in the upcoming Thirty Meter Telescope (TMT) will be assisted by a multi conjugate Adaptive Optics (AO) system. For the efficient operation of the AO system, during observations, a near-infrared guide star catalog which goes as faint as 22 mag in JVega band is essential and such a catalog does not exist. A methodology, based on stellar atmospheric models, to compute the expected near-infrared magnitudes of stellar sources from their optical magnitudes is developed. The method is applied and validated in JHKs bands for a magnitude range of JVega 16–22 mag. The methodology is also applied and validated using the reference catalog of PAN STARRS. We verified that the properties of the final PAN STARRS optical catalog will satisfy the requirements of TMT IRGSC and will be one of the potential sources for the generation of the final catalog. In a broader context, this methodology is applicable for the generation of a guide star catalog for any existing/upcoming near-infrared telescopes
    • …
    corecore