1,267 research outputs found

    The Dynamics of Public Goods

    Get PDF
    We analyze the replicator equation for two games closely related with the social dilemma occurring in public goods situation. In one case, players can punish defectors in their group. In another case, they can choose not to take part in the game. In both cases, interactions are not pairwise and payoffs are nonlinear. Nevertheless, the qualitative dynamics can be fully analyzed. The games offer potential solutions for the problem of the emergence of cooperation in sizeable groups of non-related individuals - a basic question in evolutionary biology and economics

    Fundamental limitations to gain enhancement in periodic media and waveguides

    Get PDF
    A common strategy to compensate for losses in optical nanostructures is to add gain material in the system. By exploiting slow-light effects it is expected that the gain may be enhanced beyond its bulk value. Here we show that this route cannot be followed uncritically: inclusion of gain inevitably modifies the underlying dispersion law, and thereby may degrade the slow-light properties underlying the device operation and the anticipated gain enhancement itself. This degradation is generic; we demonstrate it for three different systems of current interest (coupled resonator optical waveguides, Bragg stacks, and photonic crystal waveguides). Nevertheless, a small amount of added gain may be beneficial

    On the competition for ultimately stiff and strong architected materials

    Full text link
    Advances in manufacturing techniques may now realize virtually any imaginable microstructures, paving the way for architected materials with properties beyond those found in nature. This has lead to a quest for closing gaps in property-space by carefully designed metamaterials. Development of mechanical metamaterials has gone from open truss lattice structures to closed plate lattice structures with stiffness close to theoretical bounds. However, the quest for optimally stiff and strong materials is complex. Plate lattice structures have higher stiffness and (yield) strength but are prone to buckling at low volume fractions. Hence here, truss lattice structures may still be optimal. To make things more complicated, hollow trusses or structural hierarchy bring closed-walled microstructures back in the competition. Based on analytical and numerical studies of common microstructures from the literature, we provide higher order interpolation schemes for their effective stiffness and (buckling) strength. Furthermore, we provide a case study based on multi-property Ashby charts for weight-optimal porous beams under bending, that demonstrates the intricate interplay between structure and microarchitecture that plays the key role in the design of ultimate load carrying structures. The provided interpolation schemes may also be used to account for microstructural yield and buckling in multiscale design optimization schemes.Comment: 18 pages main manuscript with 6 figures and 10 pages appendix with 2 figure

    Topology Optimization and 3D printing of Large Deformation Compliant Mechanisms for Straining Biological Tissues

    Full text link
    This paper presents a synthesis approach in a density-based topology optimization setting to design large deformation compliant mechanisms for inducing desired strains in biological tissues. The modelling is based on geometrical nonlinearity together with a suitably chosen hypereleastic material model, wherein the mechanical equilibrium equations are solved using the total Lagrangian finite element formulation. An objective based on least-square error with respect to target strains is formulated and minimized with the given set of constraints and the appropriate surroundings of the tissues. To circumvent numerical instabilities arising due to large deformation in low stiffness design regions during topology optimization, a strain-energy based interpolation scheme is employed. The approach uses an extended robust formulation i.e. the eroded, intermediate and dilated projections for the design description as well as variation in tissue stiffness. Efficacy of the synthesis approach is demonstrated by designing various compliant mechanisms for providing different target strains in biological tissue constructs. Optimized compliant mechanisms are 3D-printed and their performances are recorded in a simplified experiment and compared with simulation results obtained by a commercial software.Comment: 23 pages, 14 figure

    Duplication-divergence model of protein interaction network

    Full text link
    We show that the protein-protein interaction networks can be surprisingly well described by a very simple evolution model of duplication and divergence. The model exhibits a remarkably rich behavior depending on a single parameter, the probability to retain a duplicated link during divergence. When this parameter is large, the network growth is not self-averaging and an average vertex degree increases algebraically. The lack of self-averaging results in a great diversity of networks grown out of the same initial condition. For small values of the link retention probability, the growth is self-averaging, the average degree increases very slowly or tends to a constant, and a degree distribution has a power-law tail.Comment: 8 pages, 13 figure

    The decontamination of radioactive ion exchange resins using neutral salts as elutriants

    Get PDF
    Includes bibliographical references (leaves 124-126

    Dissipative Landau-Zener transitions of a qubit: bath-specific and universal behavior

    Full text link
    We study Landau-Zener transitions in a qubit coupled to a bath at zero temperature. A general formula is derived that is applicable to models with a non-degenerate ground state. We calculate exact transition probabilities for a qubit coupled to either a bosonic or a spin bath. The nature of the baths and the qubit-bath coupling is reflected in the transition probabilities. For diagonal coupling, when the bath causes energy fluctuations of the diabatic qubit states but no transitions between them, the transition probability coincides with the standard LZ probability of an isolated qubit. This result is universal as it does not depend on the specific type of bath. For pure off-diagonal coupling, by contrast, the tunneling probability is sensitive to the coupling strength. We discuss the relevance of our results for experiments on molecular nanomagnets, in circuit QED, and for the fast-pulse readout of superconducting phase qubits.Comment: 16 pages, 8 figure
    corecore