276 research outputs found

    Igniting homogeneous nucleation

    Get PDF
    Transient homogeneous nucleation is studied in the limit of large critical sizes. Starting from pure monomers, three eras of transient nucleation are characterized in the classic Becker-D\"oring kinetic equations with two different models of discrete diffusivity: the classic Turnbull-Fisher formula and an expression describing thermally driven growth of the nucleus. The latter diffusivity yields time lags for nucleation which are much closer to values measured in experiments with disilicate glasses. After an initial stage in which the number of monomers decreases, many clusters of small size are produced and a continuous size distribution is created. During the second era, nucleii are increasing steadily in size in such a way that their distribution appears as a wave front advancing towards the critical size for steady nucleation. The nucleation rate at critical size is negligible during this era. After the wave front reaches critical size, it ignites the creation of supercritical clusters at a rate that increases monotonically until its steady value is reached. Analytical formulas for the transient nucleation rate and the time lag are obtained that improve classical ones and compare very well with direct numerical solutions.Comment: 32 pages, 6 figures, to appear in Phys. Rev.

    Modulation of the nucleation rate pre-exponential in a low-temperature Ising system

    Full text link
    A metastable lattice gas with nearest-neighbor interactions and continuous-time dynamics is studied using a generalized Becker-Doring approach in the multidimensional space of cluster configurations. The pre-exponential of the metastable state lifetime (inverse of nucleation rate) is found to exhibit distinct peaks at integer values of the inverse supersaturation. Peaks are unobservable (infinitely narrow) in the strict limit T->0, but become detectable and eventually dominate at higher temperatures.Comment: 4 pages, 2 Postscript figures, LaTeX, submitted to Phys. Rev. Lett. Changes: updated references, re-written section around eqs.(5),(6), typos, minor wording changes in conclusion and other parts of text (mostly in response to referees' comments). Paper resubmitted to PR

    Multi-step particle emission probabilities in superheavy nuclei at moderate excitation energies

    Full text link
    The probabilities of xnxn-, pxnpxn-, and αxn\alpha xn-evaporation channels in excited superheavy nuclei were evaluated using the Monte Carlo method. The calculations utilized microscopically determined nuclear level densities and were compared with results obtained from the phenomenological Jackson formula. Effective temperatures derived from the microscopic approach were incorporated into the Jackson formula for different evaporation channels at low and moderate excitation energies. Additionally, an analytical formula was introduced to estimate the average kinetic energy of emitted particles in multi-step processes.Comment: 10 pages, 3 figure

    Effect of Coriolis Interaction on the Decay of Isotones with N = 149 and N = 153

    Get PDF
    © 2018, Allerton Press, Inc. The quasi-neutron structure of nuclei in two chains of odd isotones with N = 149 and N = 153:243,247Pu,245,249Cm,247,251Cf,249,253Fm,251,255No, and is considered. Single-particle energy spectra are calculated using the two center shell model (TCSM). Minimizing the potential energy with respect to the collective coordinates gives the ground state of the studied nucleos, which is subsequently used to describe low-lying quasi-neutron states. The K-mixing of the basis TCSM wave functions is considered by including the Coriolis correction in the total Hamiltonian of the system. The effect of level blocking is also considered in the calculations. The probabilities of the E2 transitions to the ground states and the corresponding lifetimes of the quasi-neutron levels are estimated

    Entropies, level-density parameters, and fission probabilities along the triaxially- and axially-symmetric fission paths in 296^{296}Lv

    Full text link
    We employ a statistical approach to investigate the influence of axial asymmetry on the nuclear level density and entropy along the fission pathways of a superheavy nucleus, explicitly focusing on the 296^{296}Lv isotope. These pathways are determined within multidimensional deformation spaces. Our analysis reveals a significant impact of triaxiality on entropy. Additionally, suppressing shell effects can alter the fission scenario depending on the available excitation energy. We derive the deformation-dependent level density parameter, which plays a crucial role in estimating the survival probability of a superheavy nucleus. Furthermore, we utilize a set of master equations to obtain the time-dependent fission probabilities and calculate the ratio of decay probabilities for both axial and triaxial paths.Comment: submitted to PR

    Level densities and shell corrections of superheavy nuclei

    Get PDF
    © Published under licence by IOP Publishing Ltd. The intrinsic level densities of superheavy nuclei in the α-decay chains of 296;298;300120 nuclei are calculated using the single-particle spectra obtained with the modifed two-center shell model. The level density parameters are extracted and compared with their phenomenological values used in the calculations of the survival of excited heavy nuclei. The dependences of the level density parameters on the mass and charge numbers as well as on the ground-state shell corrections are studied
    corecore