69 research outputs found

    Observational Constraints on Cosmological Models with the Updated Long Gamma-Ray Bursts

    Full text link
    In the present work, by the help of the newly released Union2 compilation which consists of 557 Type Ia supernovae (SNIa), we calibrate 109 long Gamma-Ray Bursts (GRBs) with the well-known Amati relation, using the cosmology-independent calibration method proposed by Liang {\it et al.}. We have obtained 59 calibrated high-redshift GRBs which can be used to constrain cosmological models without the circularity problem (we call them ``Hymnium'' GRBs sample for convenience). Then, we consider the joint constraints on 7 cosmological models from the latest observational data, namely, the combination of 557 Union2 SNIa dataset, 59 calibrated Hymnium GRBs dataset (obtained in this work), the shift parameter RR from the WMAP 7-year data, and the distance parameter AA of the measurement of the baryon acoustic oscillation (BAO) peak in the distribution of SDSS luminous red galaxies. We also briefly consider the comparison of these 7 cosmological models.Comment: 19 pages, 3 tables, 10 figures, revtex4; v2: accepted for publication in JCAP; v3: published versio

    Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR)

    No full text
    Biological nutrient removal (BNR) was investigated in a fixed bed sequencing batch reactor (FBSBR) in which instead of activated sludge polypropylene carriers were used. The FBSBR performance on carbon and nitrogen removal at different loading rates was significant. COD. TN, and phosphorus removal efficiencies were at range of 90-96%, 60-88%, and 76-90% respectively while these values at SBR reactor were 85-95%, 38-60%, and 20-79% respectively. These results show that the simultaneous nitrification-denitrification (SND) is significantly higher than conventional SBR reactor. The higher total phosphorus (TP) removal in FBSBR correlates with oxygen gradient in biofilm layer. The influence of fixed media on biomass production yield was assessed by monitoring the MLSS concentrations versus COD removal for both reactors and results revealed that the sludge production yield (Y-obs) is significantly less in FBSBR reactors compared with SBR reactor. The FBSBR was more efficient in SND and phosphorus removal. Moreover, it produced less excess sludge but higher in nutrient content and stabilization ratio (less VSS/TSS ratio). (C) 2010 Elsevier B.V. All rights reserved

    Antimicrobial effects of selenium nanoparticles in combination with photodynamic therapy against Enterococcus faecalis biofilm

    No full text
    Background: Selenium Nanoparticles (SeNPs) were reported as an agent that may enhance the effectiveness of Photodynamic Antimicrobial Chemotherapy (PACT). This in vitro study evaluates the effect of SeNPs on the efficacy of Methylene Blue (MB)-induced PACT against the biofilm formated in 96-well plates and the dentine tubule biofilm of Enterococcus faecalis. Methods: Chitosan coated SeNPs were synthesized using chemical reduction method and were characterized by Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS). Twenty-four-hour biofilms of E. faecalis were developed on 96-well plates and treated with SeNPs, MB, and Light-Emitting Diode (LED). Also, three-week biofilms of E. faecalis were formed on 67 specimens of dentinal tubules, and the antibacterial effects of MB+SeNPs on these biofilms were studied. Results: The average hydrodynamic diameter of SeNPs was 80/3 nm according to DLS measurement. The combined use of MB and SeNPs significantly reduced Colony-Forming Units (CFUs) of one-day-old E. faecalis biofilms in comparison with the control group (P value < 0.05). Besides, combination therapy had the most antibacterial effect on root canal E. faecalis biofilms at both 200 and 400 µm depths of dentine tubules (P value < 0.001). Of note, about 50 of human fibroblast cells survived at a concentration of 128 µg/ml of SeNPs, compared to the control group. Conclusion: The results demonstrated that the photodynamic therapy modified by SeNPs could be an effective disinfection alternative to the destruction of E. faecalis biofilms and root canal treatment. © 202

    In situ surface modification of molybdenum‐doped organic–inorganic hybrid TiO2 nanoparticles under hydrothermal conditions and treatment of pharmaceutical effluent

    No full text
    Molybdenum-doped TiO2 organic-inorganic hybrid nanoparticles were synthesized under mild hydrothermal conditions by in situ surface modification using n-butylamine. This was carried out at 150 degrees C at autogeneous pressure over 18 h. n-Butylamine was selected as a surfactant since it produced nanoparticles of the desired size and shape. The products were characterized using powder X-ray diffraction, Fourier transform infrared spectrometry, dynamic light-scattering spectroscopy, UV-Vis spectroscopy and transmission electron microscopy. Chemical oxygen demand was estimated in order to determine the photodegradation efficiency of the molybdenum-doped TiO2 hybrid nanoparticles in the treatment of pharmaceutical effluents. It was found that molybdenum-doped TiO2 hybrid nanoparticles showed higher photocatalytic efficiency than untreated TiO2 nanoparticles

    Photocatalytic treatment of municipal wastewater using modified neodymium doped TiO2 hybrid nanoparticles

    No full text
    Photocatalytic degradation of municipal wastewater was investigated using reagent grade TiO2 and modified neodymium doped TiO2 hybrid nanoparticles. For the first time, surface modification of Nd3+ doped TiO2 hybrid nanoparticles were carried out with n-butylamine as surface modifier under mild hydrothermal conditions. The modified nanoparticles obtained were characterized by Powder XRD, FTIR, DLS, TEM, BET surface area, zeta potential and UV-Vis Spectroscopy. The characterization results indicated better morphology, particle size distribution and low agglomeration of the nanoparticles synthesized. It was found that photodegradation of wastewater using surface modified neodymium doped TiO2 nanoparticles was more compared to pure TiO2, which can be attributed to the doping and modification with n-butylamine
    corecore