625 research outputs found
Phase Diagrams for the = 1/2 Fractional Quantum Hall Effect in Electron Systems Confined to Symmetric, Wide GaAs Quantum Wells
We report an experimental investigation of fractional quantum Hall effect
(FQHE) at the even-denominator Landau level filling factor = 1/2 in very
high quality wide GaAs quantum wells, and at very high magnetic fields up to 45
T. The quasi-two-dimensional electron systems we study are confined to GaAs
quantum wells with widths ranging from 41 to 96 nm and have variable
densities in the range of to cm. We present several experimental phase diagrams for the
stability of the FQHE in these quantum wells. In general, for a given
, the 1/2 FQHE is stable in a limited range of intermediate densities where
it has a bilayer-like charge distribution; it makes a transition to a
compressible phase at low densities and to an insulating phase at high
densities. The densities at which the FQHE is stable are larger for
narrower quantum wells. Moreover, even a slight charge distribution asymmetry
destabilizes the FQHE and turns the electron system into a
compressible state. We also present a plot of the symmetric-to-antisymmetric
subband separation (), which characterizes the inter-layer
tunneling, vs density for various . This plot reveals that at
the boundary between the compressible and FQHE phases increases
\textit{linearly} with density for all the samples. Finally, we summarize the
experimental data in a diagram that takes into account the relative strengths
of the inter-layer and intra-layer Coulomb interactions and . We
conclude that, consistent with the conclusions of some of the previous studies,
the FQHE observed in wide GaAs quantum wells with symmetric charge
distribution is stabilized by a delicate balance between the inter-layer and
intra-layer interactions, and is very likely described by a two-component
() state.Comment: Accepted for publication in Phys. Rev.
Multicomponent fractional quantum Hall states with subband and spin degrees of freedom
In wide GaAs quantum wells where two electric subbands are occupied we apply
a parallel magnetic field or increase the electron density to cause a crossing
of the two Landau levels of these subbands and with opposite spins. Near
the crossing, the fractional quantum Hall states in the filling factor range
exhibit a remarkable sequence of pseudospin polarization transitions
resulting from the interplay between the spin and subband degrees of freedom.
The field positions of the transitions yield a new and quantitative measure of
the composite Fermions' discrete energy level separations. Surprisingly, the
separations are smaller when the electrons have higher spin-polarization
Radiation-induced bystander effect in non-irradiated glioblastoma spheroid cells
Radiation-induced bystander effects (RIBEs) are detected in cells that are not irradiated but receive signals from treated cells. The present study explored these bystander effects in a U87MG multicellular tumour spheroid model. A medium transfer technique was employed to induce the bystander effect, and colony formation assay was used to evaluate the effect. Relative changes in expression of BAX, BCL2, JNK and ERK genes were analysed using RT-PCR to investigate the RIBE mechanism. A significant decrease in plating efficiency was observed for both bystander and irradiated cells. The survival fraction was calculated for bystander cells to be 69.48 and for irradiated cells to be 34.68. There was no change in pro-apoptotic BAX relative expression, but anti-apoptotic BCL2 showed downregulation in both irradiated and bystander cells. Pro-apoptotic JNK in bystander samples and ERK in irradiated samples were upregulated. The clonogenic survival data suggests that there was a classic RIBE in U87MG spheroids exposed to 4 Gy of X-rays, using a medium transfer technique. Changes in the expression of pro- and anti-apoptotic genes indicate involvement of both intrinsic apoptotic and MAPK pathways in inducing these effects. Ă© 2015 The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology
Cosmology of gravity in non-flat Universe
We investigate the cosmological implications of gravity, which is a
modified theory of gravity based on non-metricity, in non-flat geometry. We
perform a detailed dynamical-system analysis keeping the function
completely arbitrary. As we show, the cosmological scenario admits a
dark-matter dominated point, as well as a dark-energy dominated de Sitter
solution which can attract the Universe at late times. However, the main result
of the present work is that there are additional critical points which exist
solely due to curvature. In particular, we find that there are
curvature-dominated accelerating points which are unstable and thus can
describe the inflationary epoch. Additionally, there is a point in which the
dark-matter and dark-energy density parameters are both between zero and one,
and thus it can alleviate the coincidence problem. Finally, there is a saddle
point which is completely dominated by curvature. In order to provide a
specific example, we apply our general analysis to the power-law case, showing
that we can obtain the thermal history of the Universe, in which the curvature
density parameter may exhibit a peak at intermediate times. These features,
alongside possible indications that non-zero curvature could alleviate the
cosmological tensions, may serve as advantages for gravity in non-flat
geometry
Investigation of multi-phase tubular permanent magnet linear generator for wave energy converters
In this article, an investigation into different magnetization topologies for a long stator tubular permanent magnet linear generator is performed through a comparison based on the cogging force disturbance, the power output, and the cost of the raw materials of the machines. The results obtained from finite element analysis simulation are compared with an existing linear generator described in [1]. To ensure accurate results, the generator developed in [1] is built with 3D CAD and simulated using the finite-element method, and the obtained results are verified with the source.The PRIMaRE project
Application of compressed sensing to the simulation of atomic systems
Compressed sensing is a method that allows a significant reduction in the
number of samples required for accurate measurements in many applications in
experimental sciences and engineering. In this work, we show that compressed
sensing can also be used to speed up numerical simulations. We apply compressed
sensing to extract information from the real-time simulation of atomic and
molecular systems, including electronic and nuclear dynamics. We find that for
the calculation of vibrational and optical spectra the total propagation time,
and hence the computational cost, can be reduced by approximately a factor of
five.Comment: 7 pages, 5 figure
Seismic hazard assessment for Iran in terms of macroseismic intensity
We present the results of probabilistic seismic hazard assessment for Iran based on a statistical procedure specifically developed to manage macroseismic intensity data. This method takes into careful consideration the specific features of such data, which are characterized as ordinal, discrete, and confined within a finite interval, ensuring a logically coherent approach throughout the analysis. The results of our assessment are then compared with hazard maps generated using a standard approach, putting in evidence significant differences both on a national scale and relative to individual cities. This comparative analysis will be useful in identifying areas of utmost concern, where further studies are strongly recommended to yield hazard estimates of greater robustness and reliability. By pinpointing these critical scenarios, we aim to guide future research endeavors towards providing more accurate and reliable seismic hazard estimates. Identifying these critical situations facilitates the prioritization of resources and interventions, ultimately enhancing seismic risk mitigation efforts across Iran
Too Big to Manage: US Megabanksâ Competition by Innovation and the Microfoundations of Financialization
Disagreements over the systemic implicationsâthe futureâof financialization can be traced in part to the absence of sustained attention to the role of banking firms in driving this secular shift forward. That is, the financialization literature lacks an adequate microfoundation. Accounting for the drivers of financialization processes solely at the macro level overlooks the problems of how these processes came about and whether they are sustainable. This paper addresses this explanatory gap, arguing that a key independent microeconomic driver of increasing financialization did exist: the incessant efforts by money-centre banks in the USA to break out of Depression-era restrictions on their size, activities, and markets. These banksâ growth strategies in turbulent times led to an institutional (meso) shiftâthe rise of a megabank-centred shadow banking systemâthat now shapes global financial architecture even while operating in ways that are unsustainable. In short, too-big-to-manage megabanks are at the heart of the fragility and instability of the economy today
Jump-diffusion unravelling of a non Markovian generalized Lindblad master equation
The "correlated-projection technique" has been successfully applied to derive
a large class of highly non Markovian dynamics, the so called non Markovian
generalized Lindblad type equations or Lindblad rate equations. In this
article, general unravellings are presented for these equations, described in
terms of jump-diffusion stochastic differential equations for wave functions.
We show also that the proposed unravelling can be interpreted in terms of
measurements continuous in time, but with some conceptual restrictions. The
main point in the measurement interpretation is that the structure itself of
the underlying mathematical theory poses restrictions on what can be considered
as observable and what is not; such restrictions can be seen as the effect of
some kind of superselection rule. Finally, we develop a concrete example and we
discuss possible effects on the heterodyne spectrum of a two-level system due
to a structured thermal-like bath with memory.Comment: 23 page
- âŠ