20 research outputs found
Acute hypoxia alters visuospatial attention orienting: an electrical neuroimaging study
Abstract Our study investigated the effects of hypoxia on visuospatial attention processing during preparation for a single/double-choice motor response. ERPs were recorded in two sessions in which participants breathed either ambient-air or oxygen-impoverished air. During each session, participants performed four cue-target attention orienting and/or alerting tasks. Replicating the classic findings of valid visuospatial attentional orienting modulation, ERPs to pre-target cues elicited both an Anterior directing attention negativity (ADAN)/CNV and a posterior Late directing attention positivity (LDAP)/TP, which in ambient air were larger for attention orienting than for alerting. Hypoxia increased the amplitude of both these potentials in the spatial orienting conditions for the upper visual hemifield, while, for the lower hemifield, it increased ADAN/CNV, but decreased LDAP/TP for the same attention conditions. To these ERP changes corresponded compensatory enhanced activation of right anterior cingulate cortex, left superior parietal lobule and frontal gyrus, as well as detrimental effects of hypoxia on behavioral overt performance. Together, these findings reveal for the first time, to our knowledge, that (1) these reversed alterations of the activation patterns during the time between cue and target occur at a larger extent in hypoxia than in air, and (2) acute normobaric hypoxia alters visuospatial attention orienting shifting in space
Profiling Transposable Elements and Their Epigenetic Effects in Non-model Species
Taking transposable elements into consideration in surveys of genetic and epigenetic variation remains challenging in species lacking a high-quality reference genome. Here, molecular techniques reducing genome complexity and specifically targeting restructuring and methylation changes in TE genome fractions are described. In particular, methyl-sensitive transposon display (MSTD) uses isoschizomers and PCR amplifications to assess the methylation environment of TE insertions. MSTD offers reliable insights into genome-wide epigenetic changes associated with TEs, especially when used together with similar techniques tracking random sequences
Successful everolimus therapy for SEGA in pediatric patients with tuberous sclerosis complex
Tuberous sclerosis complex (TSC) is associated with hamartomatous growths including subependymal giant cell astrocytomas (SEGAs). Although, SEGAs are slow-growing glioneuronal tumors, they represent a significant cause of morbidity and mortality due to the risk of sudden death from acute hydrocephalus. Neurosurgical resection has been the mainstay of therapy, since radiotherapy and chemotherapy were proved inefficient in those tumors. Recent studies support the use of everolimus for subependymal giant cell astrocytomas associated with tuberous sclerosis and suggest it might represent a disease-modifying treatment for other aspects of tuberous sclerosis.We describe the clinical and radiological progression of three pediatric patients with definitive diagnosis of TSC and SEGA, which have been treated with everolimus.Up to 34 % sustained SEGA decrease was observed in the three cases. All three patients have experienced seizure control and two of them have showed cognitive and behavioral improvement. Everolimus has been well tolerated by all. No severe adverse events have been observed to date.Everolimus offers significant promise in treating SEGAs. Studies are required to explore optimal therapy duration and management upon discontinuing therapy.Novartis Biociencias S.A.Universidade Federal de São Paulo, GRAACC, Inst Pediat Oncol, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, GRAACC, Inst Pediat Oncol, BR-04023062 São Paulo, BrazilWeb of Scienc