53 research outputs found

    Perspective Chapter: The Toxic Silver (Hg)

    Get PDF
    In the late 1950s, residents of a Japanese fishing village known as “Minamata” began falling ill and dying at an alarming rate. The Japanese authorities stated that methyl-mercury-rich seafood and shellfish caused the sickness. Burning fossil fuels represent ≈52.7% of Hg emissions. The majorities of mercury’s compounds are volatile and thus travel hundreds of miles with wind before being deposited on the earth’s surface. High acidity and dissolved organic carbon increase Hg-mobility in soil to enter the food chain. Additionally, Hg is taken up by areal plant parts via gas exchange. Mercury has no identified role in plants while exhibiting high affinity to form complexes with soft ligands such as sulfur and this consequently inactivates amino acids and sulfur-containing antioxidants. Long-term human exposure to Hg leads to neurotoxicity in children and adults, immunological, cardiac, and motor reproductive and genetic disorders. Accordingly, remediating contaminated soils has become an obligation. Mercury, like other potentially toxic elements, is not biodegradable, and therefore, its remediation should encompass either removal of Hg from soils or even its immobilization. This chapter discusses Hg’s chemical behavior, sources, health dangers, and soil remediation methods to lower Hg levels

    On-chip antenna: Practical design and characterization considerations

    No full text
    [abstract not available

    Cap-preserving SMILE Enhancement Surgery

    No full text
    Abstract Background Different enhancement procedures have been suggested for reduction of residual refractive errors after SMILE. The aim of this study is to evaluate an improved cap-preserving technique for enhancement after SMILE (Re-SMILE). Methods A retrospective case series was conducted at Eye subspecialty center, Cairo, Egypt on 9 eyes with myopia or myopic astigmatism (spherical equivalent – 8.0 and − 12.0D). undergoing SMILE procedure and needed second interference. This was either because the more myopic meridian was more than − 10.0 D and therefore planned to have two-steps procedure (six eyes) or because of under correction needing enhancement (three eyes). Assessment after the primary SMILE procedure was conducted at 1 day, 1 week, 1 month and 3 months postoperatively. Assessment after Re-SMILE was conducted at 1 day, 1 week, 1 month, 3 months, 6 months and 1 year postoperatively. The assessments included full ophthalmic examination, objective and subjective refraction, and rotating Scheimpflug camera imaging. Results Preoperatively, the mean refractive spherical equivalent (MRSE) values were: − 9.36 ± 0. 89. After primary SMILE it was − 2.18 ± 0.71. After Re-SMILE it was − 0.13 ± 0.68. MRSE was significantly improved after both procedures (P < 0.01). The safety index of primary SMILE cases was 1.65 ± 0.62 and for Re-SMILE 1.13 ± 0.34 and the efficacy index was 1.14 ± 0.24 after primary SMILE and 1.11 ± 0.26 after Re-SMILE. Conclusion Centered cap-preserving Re-SMILE is an effective procedure in reducing residual refractive errors after primary SMILE in high myopes
    • 

    corecore