48 research outputs found

    Quantification of depth of anesthesia by nonlinear time series analysis of brain electrical activity

    Full text link
    We investigate several quantifiers of the electroencephalogram (EEG) signal with respect to their ability to indicate depth of anesthesia. For 17 patients anesthetized with Sevoflurane, three established measures (two spectral and one based on the bispectrum), as well as a phase space based nonlinear correlation index were computed from consecutive EEG epochs. In absence of an independent way to determine anesthesia depth, the standard was derived from measured blood plasma concentrations of the anesthetic via a pharmacokinetic/pharmacodynamic model for the estimated effective brain concentration of Sevoflurane. In most patients, the highest correlation is observed for the nonlinear correlation index D*. In contrast to spectral measures, D* is found to decrease monotonically with increasing (estimated) depth of anesthesia, even when a "burst-suppression" pattern occurs in the EEG. The findings show the potential for applications of concepts derived from the theory of nonlinear dynamics, even if little can be assumed about the process under investigation.Comment: 7 pages, 5 figure

    Seizure Possibly Associated with Fluvoxamine

    No full text

    Model-optimal optimization by solving bellman equations

    No full text

    Propofol, seizure and antidepressants

    No full text

    EEG recordings in the course of recovery from stroke.

    No full text

    Scalable Neural Networks for Board Games

    No full text
    Learning to solve small instances of a problem should help in solving large instances. Unfortunately, most neural network architectures do not exhibit this form of scalability. Our Multi-Dimensional Recurrent LSTM Networks, however, show a high degree of scalability, as we empirically show in the domain of flexible-size board games. This allows them to be trained from scratch up to the level of human beginners, without using domain knowledge
    corecore