14 research outputs found
EXTRACTION OF ELEMENT AT RISK FOR LANDSLIDES USING REMOTE SENSING METHOD
One of the most critical steps towards landslide risk analysis is the determination of element at risk. Element at risk describes any object that could potentially fail or exposed to hazards during disaster. Without quantification of element at risk information, it is difficult to estimate risk. This paper aims at developing a methodology to extract and quantity element at risk from airborne Light Detection and Ranging (LiDAR) data. The element at risk map produced was then used to construct exposure map which describes the amount of hazard for each element at risk involved. This study presented two study sites at Kundasang and Kota Kinabalu in Sabah with both areas have experienced major earthquake in June 2015. The results show that not all the features can be automatically extracted from the LiDAR data. For example, automatic extraction process could be done for building footprint and building heights, but for others such as roads and vegetation areas, a manual digitization is still needed because of the difficulties to differentiate between these features. In addition to this, there were also difficulties in identifying attribute for each feature, for example to separate between federal roads with state and unpaved roads. Therefore, for large area hazard and risk mapping, the authors suggested that an automatic process should be investigated in the future to reduce time and cost to extract important features from LiDAR data
3DKL v1.0: creating the first 3D geological model of Kuala Lumpur
The objective of UN Sustainable Development Goal 11 is to make cities and human settlements inclusive, safe, resilient and sustainable. Geoscience can play a significant role in achieving targets within this goal by developing a better understanding of geological properties and processes within urban environments, and by ensuring that this understanding is integrated into urban development. A key step in this process will be enhancing awareness of urban geology among non-geoscience decision-makers, so that inherent subsurface risks and benefits are understood and accounted for during all phases of development. Three-dimensional geological models are an effective tool for geologists to communicate with stakeholders in government and industry during that process. They can also provide a framework to enable geological data and information to be integrated into Building and City Information Models, and thus facilitate more effective infrastructure and utility asset management. This paper describes the modelling workflow adopted by a consortium of geoscientists from government, industry and academia to deliver the first 3D geological model of Kuala Lumpur – 3DKL v1.0. The modelling workflow involved: digitising borehole logs from site investigation reports and storing them in a dedicated geospatially-enabled SQLite borehole database; viewing and interpreting that borehole data using QGIS software; generating multiple orthogonally oriented cross-section profiles across the modelled area using Groundhog Desktop software; and integrating the information derived from the interpreted boreholes, surface data and cross-section profiles to generate a 3D geological model in Leapfrog Geo software. 3DKL v1.0 has demonstrated proof-of-concept: we have developed a workflow, based largely on freely-available software, for transforming borehole information, previously captured in paper records, into a conceptual 3D model. The modelling process has also identified areas where geological knowledge and data need to be enhanced if 3DKL is to fulfil its potential to support more sustainable and resilient urban development in Kuala Lumpur
Synchronized cell balancing charging of supercapacitors using PI control
Abstract
This paper covers the synchronized cell balancing charging of supercapacitors using pi control. The main objective of this project is to design a balanced circuit for supercapacitor and balance the voltage for each supercapacitor in series using pi control. This project aims to introduce a switch resistor design for a supercapacitor to balance the cell. Due to its low cost, easy to implement, and charge/discharge, the switch resistor design was chosen as the balanced circuit. The switch resistor design process was accomplished taking into account all the calculation for the design parameters. Using the pi control given to the circuit the stability and balancing in the voltage. The pi control design process was accomplished with the calculation for the design parameters.</jats:p
A review: Partial discharge detection using acoustic sensor on high voltage transformer
Abstract
Partial discharge (PD) is an electrical discharge which is one of the most critical breakdown factor that is affecting the electrical equipment. The loss of the power will affect consumers and system operation. High voltage (HV) transformer is one of the equipment’s subjected to phenomena PD. In this paper reviews an application of acoustic methods in transformer and piezoelectric sensors application on PD detection in HV transformer. Based on this review, the new design in acoustic sensor is required in order to improve the sensitivity and bandwidth for PD detection at HV transformer. The valuable parameter such as materials, size, and PD frequency range were discussed in this paper and can be used for early stage on designing new acoustic sensor. This detection method given some benefits on preventing the power electrical system from breakdown.</jats:p
Location Technique based on Multiple Partial Discharge Signal in 11kV Underground Power Cable using EMTP-ATP Software
Abstract
Power cables are very critical in electrical power systems as power cables failure can interrupt the electrical flow due to unexpected power failure. There are a few sorts of partial discharge (PD) estimations gadgets in the market. For instance, PD can be distinguished by utilizing Rogowski coil (RC) sensors in the disconnected procedure. The current issue PD signal does not usually occur as a single source. Thus, the analysis of multiple PD sources is required to ensure that the cable insulation is in a healthy condition. PD location technique based on multiple signals in 11kV underground power cable was conducted in this research to estimate the accurate location of the PD signal. Modelling of single power cable in a distance of 10km with the RC sensor is installed at several distances to capture the PD signal that travels along the power cable. By selecting the distance between six RC sensors and synchronous multiple PD signal, the design of the power system has been constructed by using EMTP-ATP software. Multi-point technique based on time difference of arrival (TDOA) was performed in the single line power cable to obtain the PD location. The measurement using multi-point of RC sensor technique is preferred based on the conditions due to the value of velocity elimination. Based on the results, the accurate location of PD Source 1 is detected 501 m along RC sensor A1 to RC sensor A3. In contrast, PD source 2 has been detected 2800.15 m along RC sensor A4 to RC sensor A6 with the percentage error of 0.2% and 0.0053%, respectively. The findings show that the location of multiple PD signal that occurred along the line cable can be detected accurately by using the multi-point technique and TDOA. Hence, the performance of the power system has been improved.</jats:p
Load shedding analysis on microgrid during island mode
Abstract
This paper evaluates implementation load shedding strategy in island mode of microgrid(MG). Microgrid normally operates in interconnected mode either with the medium voltage(MV) and low voltage(LV) network. Microgrid can function both in grid and island mode connected. As electricity demand increases, microgrid deployment becomes an attractive option to meet energy demands. Microgrid during utility grid failure, however, suffers from crucial stability problems come from many aspects. Load Shedding Strategy (LSS) is one of the method used to sustain operation of power system in stable state. The main objective in this paper is to analyze the implementation of Load Shedding Strategy (LSS) on two different cases. The simulation model developed from a mix of generator, photovoltaic cell of source and the lumped load. ETAP software was used in analysing the result.</jats:p
Fault detection and classification in three phase series compensated transmission line using ANN
Abstract
Series compensation consists of capacitors in series is used in the transmission lines as a tool to improve the performance after disturbed by a fault. Transmission line needs a protection scheme to protect the lines from faults due to natural disturbances, short circuit and open circuit faults. The fault can happen in any location of transmission line and it is important to know which location has been affected. So that, the fault can be eliminated and can maintain the optimum performance. Therefore, in this paper Artificial Neural Network (ANN) is used to detect and classified the fault happen in single line to ground fault and three phase to ground fault. Two different tests of each types of fault have been tested in order to prove the effectiveness of ANN to detect the fault location by using different length and fault resistance. The simulation has been accomplished in MATLAB with ANN fitting tool which build and train the network before evaluated its performance using regression analysis. The analysis shows that the ANN can accurately detect the different types of faults and classified it into the respective category even the random vectors are put on the system are used.</jats:p
Application of multispectral UAV for paddy growth monitoring in Jitra, Kedah, Malaysia
Abstract
Rice is the staple food for most people in Southeast Asia, mainly Malaysia. Unfortunately, Malaysia does not reach a 100% self-sufficiency level on rice production due to inefficiency of rice farm management, pest and disease outbreak, poorly irrigation system, and climate change. Each spectral band of electromagnetic signature in the rice crops can be identified to analyse the crop condition based on the reflectance value. Therefore, unmanned aerial vehicle (UAV) can capture different spectral band images of the rice field depending on the sensors used. This study aims to produce a paddy growth map based on the normalized difference vegetative index (NDVI) value and validate the paddy growth map using the soil plant analysis development (SPAD) data. This study was carried out at the paddy field planted with PadiU Putra rice variety in Muda Agricultural Development Authority (MADA), Jitra in Kedah. Three reading samples for each point at the paddy field within 1 m radius were recorded. Then, the samples from each point were scanned using SPAD chlorophyll meter. The image data were collected using multispectral and RGB cameras at the altitude of 60 m, and a calibrated reflectance panel was used to calibrate the image. Ground control point (GCP) was placed at the four corners of the study plot, and it was being used as a georeferencing point for aerial imagery mapping. Those images were undergone orthomosaic process to produce a single overlapped image. NDVI was used to measure the healthy level of rice crops. NDVI map had shown the distribution of NDVI value across the study plot, which includes the healthy and less healthy vegetative area. SPAD value has no significant relationship with the aerial imagery of NDVI value. The NDVI map allows the farmers to monitor the paddy growth status and effectively improve their rice farm management. In the future, advanced classification methods based on the reflectance of weed, water, and soil can be prioritized and separated into different classes, whereby the NDVI map can be plotted on the paddy crops.</jats:p
