2,849 research outputs found
Arithmetic Circuit Lower Bounds via MaxRank
We introduce the polynomial coefficient matrix and identify maximum rank of
this matrix under variable substitution as a complexity measure for
multivariate polynomials. We use our techniques to prove super-polynomial lower
bounds against several classes of non-multilinear arithmetic circuits. In
particular, we obtain the following results :
As our main result, we prove that any homogeneous depth-3 circuit for
computing the product of matrices of dimension requires
size. This improves the lower bounds by Nisan and
Wigderson(1995) when .
There is an explicit polynomial on variables and degree at most
for which any depth-3 circuit of product dimension at most
(dimension of the space of affine forms feeding into each
product gate) requires size . This generalizes the lower bounds
against diagonal circuits proved by Saxena(2007). Diagonal circuits are of
product dimension 1.
We prove a lower bound on the size of product-sparse
formulas. By definition, any multilinear formula is a product-sparse formula.
Thus, our result extends the known super-polynomial lower bounds on the size of
multilinear formulas by Raz(2006).
We prove a lower bound on the size of partitioned arithmetic
branching programs. This result extends the known exponential lower bound on
the size of ordered arithmetic branching programs given by Jansen(2008).Comment: 22 page
Superpolynomial lower bounds for general homogeneous depth 4 arithmetic circuits
In this paper, we prove superpolynomial lower bounds for the class of
homogeneous depth 4 arithmetic circuits. We give an explicit polynomial in VNP
of degree in variables such that any homogeneous depth 4 arithmetic
circuit computing it must have size .
Our results extend the works of Nisan-Wigderson [NW95] (which showed
superpolynomial lower bounds for homogeneous depth 3 circuits),
Gupta-Kamath-Kayal-Saptharishi and Kayal-Saha-Saptharishi [GKKS13, KSS13]
(which showed superpolynomial lower bounds for homogeneous depth 4 circuits
with bounded bottom fan-in), Kumar-Saraf [KS13a] (which showed superpolynomial
lower bounds for homogeneous depth 4 circuits with bounded top fan-in) and
Raz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [RY08, FLMS13] (which
showed superpolynomial lower bounds for multilinear depth 4 circuits). Several
of these results in fact showed exponential lower bounds.
The main ingredient in our proof is a new complexity measure of {\it bounded
support} shifted partial derivatives. This measure allows us to prove
exponential lower bounds for homogeneous depth 4 circuits where all the
monomials computed at the bottom layer have {\it bounded support} (but possibly
unbounded degree/fan-in), strengthening the results of Gupta et al and Kayal et
al [GKKS13, KSS13]. This new lower bound combined with a careful "random
restriction" procedure (that transforms general depth 4 homogeneous circuits to
depth 4 circuits with bounded support) gives us our final result
News of cognitive cure for age-related brain shrinkage is premature : A comment on Burgmans et al. (2009)
The extant longitudinal literature consistently supports the notion of age-related declines in human brain volume. In a report on a longitudinal cognitive follow-up with cross-sectional brain measurements, Burgmans and colleagues claim that the extant studies overestimate brain-volume declines, presumably due to inclusion of participants with preclinical cognitive pathology. Moreover, the authors of the article assert that such declines are absent among optimally healthy adults who maintain cognitive stability for several years. In this comment accompanied by re-analysis of previously published data, we argue that these claims are incorrect on logical, methodological, and empirical grounds
Other‐Sacrificing Options
I argue that you can be permitted to discount the interests of your adversaries even though doing so would be impartially suboptimal. This means that, in addition to the kinds of moral options that the literature traditionally recognises, there exist what I call other-sacrificing options. I explore the idea that you cannot discount the interests of your adversaries as much as you can favour the interests of your intimates; if this is correct, then there is an asymmetry between negative partiality toward your adversaries and positive partiality toward your intimates
Near-threshold high-order harmonic spectroscopy with aligned molecules
We study high-order harmonic generation in aligned molecules close to the
ionization threshold. Two distinct contributions to the harmonic signal are
observed, which show very different responses to molecular alignment and
ellipticity of the driving field. We perform a classical electron trajectory
analysis, taking into account the significant influence of the Coulomb
potential on the strong-field-driven electron dynamics. The two contributions
are related to primary ionization and excitation processes, offering a deeper
understanding of the origin of high harmonics near the ionization threshold.
This work shows that high harmonic spectroscopy can be extended to the
near-threshold spectral range, which is in general spectroscopically rich.Comment: 4 pages, 4 figure
New Approximability Results for the Robust k-Median Problem
We consider a robust variant of the classical -median problem, introduced
by Anthony et al. \cite{AnthonyGGN10}. In the \emph{Robust -Median problem},
we are given an -vertex metric space and client sets . The objective is to open a set of
facilities such that the worst case connection cost over all client sets is
minimized; in other words, minimize . Anthony
et al.\ showed an approximation algorithm for any metric and
APX-hardness even in the case of uniform metric. In this paper, we show that
their algorithm is nearly tight by providing
approximation hardness, unless . This hardness result holds even for uniform and line
metrics. To our knowledge, this is one of the rare cases in which a problem on
a line metric is hard to approximate to within logarithmic factor. We
complement the hardness result by an experimental evaluation of different
heuristics that shows that very simple heuristics achieve good approximations
for realistic classes of instances.Comment: 19 page
Simple extractors via constructions of cryptographic pseudo-random generators
Trevisan has shown that constructions of pseudo-random generators from hard
functions (the Nisan-Wigderson approach) also produce extractors. We show that
constructions of pseudo-random generators from one-way permutations (the
Blum-Micali-Yao approach) can be used for building extractors as well. Using
this new technique we build extractors that do not use designs and
polynomial-based error-correcting codes and that are very simple and efficient.
For example, one extractor produces each output bit separately in
time. These extractors work for weak sources with min entropy , for
arbitrary constant , have seed length , and their
output length is .Comment: 21 pages, an extended abstract will appear in Proc. ICALP 2005; small
corrections, some comments and references adde
- …