274 research outputs found
Multi-User Ranging Code Detection in OFDMA System Using MMLD Algorithm for Improving Detection Performance
Successive user detection algorithm is used to observe the multi user ranging signals and calculate there corresponding parameters. Using IEEE 802.16 specification in Orthogonal Frequency Division Multiple Access (OFDMA), initial ranging method designed an algorithm called Moment Maximum Likelihood Detection (MMLD) to detect the codes assigned and predicting offset timing. The objective function which is derived from the Expectation Maximization (EM) algorithm is used in the MMLD to cancel the channel estimation errors and Multiple Access Interference (MAI). To reduce the MAI over the iteration, the Maximum Likelihood Estimation (MLE) algorithm is designed in the MMLD. The experimental results indicate that the system is highly accurate
A Dynamic Parallel and Pipelined Architecture for Intra Prediction in H.265 Standard
In the present world where technology is growing faster, the video based applications are rapidly increasing and needs a technology which supports high resolution videos. High Efficiency Video Coding (HEVC) method is one which works on 4K and 8K video applications. In this work we have implemented the new parallel and a hardware accelerator which is highly efficient for the intra prediction blocks. Due to parallel and pipelined architecture, Intra Prediction speeds up the process of prediction and also minimizes the time required for accessing the data from the memory. The given architecture design reduces Area, Power and Delay elements. The results when compared with different FPGA versions shows that our architecture consumes 69 LUTs in ZYNQ FPGA for 4X4 pixels
Design and Implementation of High Speed Bi-directional Transceiver for Low Power Applications
In this paper, a new bi-directional transceiver has been proposed for high speed signaling. The new proposed transceiver architecture has two modes of operation namely, the transmitter and the receiver. Transceiver on either side supports two way communications via same link. Since high transimpedance gain over a large bandwidth in the receiving mode, the signaling current can be reduced to a very low value. The proposed circuit is designed in 90nm technology with the supply voltage of 1.8V
Genetic structure of the rattan Calamus thwaitesii in core, buffer and peripheral regions of three protected areas in central Western Ghats, India: do protected areas serve as refugia for genetic resources of economically important plants?
Given the increasing anthropogenic pressures on forests, the various protected areas-national parks, sanctuaries, and biosphere reserves-serve as the last footholds for conserving biological diversity. However, because protected areas are often targeted for the conservation of selected species, particularly charismatic animals, concerns have been raised about their effectiveness in conserving nontarget taxa and their genetic resources. In this paper, we evaluate whether protected areas can serve as refugia for genetic resources of economically important plants that are threatened due to extraction pressures. We examine the population structure and genetic diversity of an economically important rattan, Calamus thwaitesii, in the core, buffer and peripheral regions of three protected areas in the central Western Ghats, southern India. Our results indicate that in all the three protected areas, the core and buffer regions maintain a better population structure, as well as higher genetic diversity, than the peripheral regions of the protected area. Thus, despite the escalating pressures of extraction, the protected areas are effective in conserving the genetic resources of rattan. These results underscore the importance of protected areas in conservation of nontarget species and emphasize the need to further strengthen the protected-area network to offer refugia for economically important plant species
Magnetic and electron transport properties of the rare-earth cobaltates, La0.7-xLnxCa0.3CoO3 (Ln = Pr, Nd, Gd and Dy) : A case of phase separation
Magnetic and electrical properties of four series of rare earth cobaltates of
the formula La0.7-xLnxCa0.3CoO3 with Ln = Pr, Nd, Gd and Dy have been
investigated. Compositions close to x = 0.0 contain large ferromagnetic
clusters or domains, and show Brillouin-like behaviour of the field-cooled DC
magnetization data with fairly high ferromagnetic Tc values, besides low
electrical resistivities with near-zero temperature coefficients. The
zero-field-cooled data generally show a non-monotonic behaviour with a peak at
a temperatures slightly lower than Tc. The near x = 0.0 compositions show a
prominent peak corresponding to the Tc in the AC-susceptibility data. The
ferromagnetic Tc varies linearly with x or the average radius of the A-site
cations, (rA). With increase in x or decrease in (rA), the magnetization value
at any given temperature decreases markedly and the AC-susceptibility
measurements show a prominent transition arising from small magnetic clusters
with some characteristics of a spin-glass. Electrical resistivity increases
with increase in x, showed a significant increase around a critical value of x
or (rA), at which composition the small clusters also begin to dominate. These
properties can be understood in terms of a phase separation scenario wherein
large magnetic clusters give way to smaller ones with increase in x, with both
types of clusters being present in certain compositions. The changes in
magnetic and electrical properties occur parallely since the large
ferromagnetic clusters are hole-rich and the small clusters are hole-poor.
Variable-range hopping seems to occur at low temperatures in these cobaltates.Comment: 23 pages including figure
Unconventional magnetism in the 4d based () honeycomb system AgLiRuO
We have investigated the thermodynamic and local magnetic properties of the
Mott insulating system AgLiRuO containing Ru
(4) for novel magnetism. The material crystallizes in a monoclinic
structure with RuO octahedra forming an edge-shared
two-dimensional honeycomb lattice with limited stacking order along the
-direction. The large negative Curie-Weiss temperature ( = -57
K) suggests antiferromagnetic interactions among Ru ions though magnetic
susceptibility and heat capacity show no indication of magnetic long-range
order down to 1.8 K and 0.4 K, respectively. Li nuclear magnetic
resonance (NMR) shift follows the bulk susceptibility between 120-300 K and
levels off below 120 K. Together with a power-law behavior in the temperature
dependent spin-lattice relaxation rate between 0.2 and 2 K, it suggest dynamic
spin correlations with gapless excitations. Electronic structure calculations
suggest an description of the Ru-moments and the possible importance of
further neighbour interactions as also bi-quadratic and ring-exchange terms in
determining the magnetic properties. Analysis of our SR data indicates
spin freezing below 5 K but the spins remain on the borderline between static
and dynamic magnetism even at 20 mK.Comment: 10 pages, 11 figures. accepted in Phys. Rev.
Properties of the ferrimagnetic double-perovskite A_{2}FeReO_{6} (A=Ba and Ca)
Ceramics of A_{2}FeReO_{6} double-perovskite have been prepared and studied
for A=Ba and Ca. Ba_{2}FeReO_{6} has a cubic structure (Fm3m) with 8.0854(1) \AA whereas Ca_{2}FeReO_{6} has a distorted monoclinic symmetry with
and
. The barium compound is metallic from 5 K to 385
K, i.e. no metal-insulator transition has been seen up to 385 K, and the
calcium compound is semiconducting from 5 K to 385 K. Magnetization
measurements show a ferrimagnetic behavior for both materials, with T_{c}=315 K
for Ba_{2}FeReO_{6} and above 385 K for Ca_{2}FeReO_{6}. A specific heat
measurement on the barium compound gave an electron density of states at the
Fermi level, N(E_{F}) equal to 6.1. At 5 K, we
observed a negative magnetoresistance of 10 % in a magnetic field of 5 T, but
only for Ba_{2}FeReO_{6}. Electrical, thermal and magnetic properties are
discussed and compared to the analogous compounds Sr_{2}Fe(Mo,Re)O_{6}.Comment: 5 pages REVTeX, 7 figures included, submitted to PR
Structural, thermodynamic, and local probe investigations of a honeycomb material AgLiMnO
The system Ag[LiMn]O belongs to a quaternary
3R-delafossite family and crystallizes in a monoclinic symmetry with space
group and the magnetic Mn() ions form a honeycomb
network in the -plane. An anomaly around 50 K and the presence of
antiferromagnetic (AFM) coupling (Curie-Weiss temperature
K) were inferred from our magnetic susceptibility data. The magnetic specific
heat clearly manifests the onset of magnetic ordering in the vicinity of 48\,K
and the recovered magnetic entropy, above the ordering temperature, falls short
of the expected value, implying the presence of short-range magnetic
correlations. The (ESR) line broadening on approaching the ordering temperature
could be described in terms of a Berezinski-Kosterlitz-Thouless
(BKT) scenario with K. Li NMR line-shift probed as a
function of temperature tracks the static susceptibility (K) of
magnetically coupled Mn ions. The Li spin-lattice relaxation rate
(1/) exhibits a sharp decrease below about 50 K. Combining our bulk
and local probe measurements, we establish the presence of an ordered ground
state for the honeycomb system AgLiMnO.Our ab-initio
electronic structure calculations suggest that in the -plane, the nearest
neighbor (NN) exchange interaction is strong and AFM, while the next NN and the
third NN exchange interactions are FM and AFM respectively. In the absence of
any frustration the system is expected to exhibit long-range, AFM order, in
agreement with experiment.Comment: 11 pages, 13 figures, accepted in Phys Rev
Evaluation of third order nonlinear optical properties of SiO2/PVA-PEG Nanocomposites by Z-Scan Method
SiO2 nanoparticles was synthesized by sol-gel method and polymer nanocomposites by solvo-casting method. XRD and SEM analysis have revealed the size, morphological structure and formation of SiO2/PVA-PEG polymer nanocomposites. The presence of hydrogen bond between SiO2 and PVA-PEG was proved with the help of Fourier Transform Infra Red Spectroscopy (FTIR). Further UV-Vis studies was used to find the optical band gap and linear refractive index. Third order nonlinear optical properties such as two photon absorption, nonlinear refractive index and third order nonlinear susceptibility was evaluated for the title compound using Z-scan method. The estimated nonlinear optical properties of title compound proved the appropriateness of the sample for optical applications
- …