4 research outputs found

    Effects of contraction and insulin on protein synthesis, AMP-activated protein kinase and phosphorylation state of translation factors in rat skeletal muscle.

    No full text
    In rat epitrochlearis skeletal muscle, contraction inhibited the basal and insulin-stimulated rates of protein synthesis by 75 and 70%, respectively, while increasing adenosine monophosphate-activated protein kinase (AMPK) activity. Insulin, on the other hand, stimulated protein synthesis (by 30%) and increased p70 ribosomal protein S6 kinase (p70S6K) Thr389, 40S ribosomal protein S6 (rpS6) Ser235/236, rpS6 Ser240/244 and eukaryotic initiation factor-4E-binding protein-1 (4E-BP1) Thr37/46 phosphorylation over basal values. Electrical stimulation had no effect on mammalian target of rapamycin complex 1 (mTORC1) signalling, as reflected by the lack of reduction in basal levels of p70S6K, rpS6 Ser235/236, rpS6 Ser240/244 and 4E-BP1 phosphorylation, but did antagonize mTORC1 signalling after stimulation of the pathway by insulin. Eukaryotic elongation factor-2 (eEF2) Thr56 phosphorylation increased rapidly on electrical stimulation reaching a maximum at 1 min, whereas AMPK Thr172 phosphorylation slowly increased to reach threefold after 30 min. Eukaryotic elongation factor-2 kinase (eEF2K) was not activated after 30 min of contraction when AMPK was activated. This could not be explained by the expression of a tissue-specific isoform of eEF2K in skeletal muscle lacking the Ser398 AMPK phosphorylation site. Therefore, in this skeletal muscle system, the contraction-induced inhibition of protein synthesis could not be attributed to a reduction in mTORC1 signalling but could be due to an increase in eEF2 phosphorylation independent of AMPK activation

    Loss of HNF6 expression correlates with human pancreatic cancer progression

    No full text
    Normal pancreatic epithelium progresses through various stages of pancreatic intraepithelial neoplasms (PanINs) in the development of pancreatic ductal adenocarcinoma (PDAC). Transcriptional regulation of this progression is poorly understood. In mouse, the Hnf6 transcription factor is expressed in ductal cells and at lower levels in acinar cells of the adult pancreas, but not in mature endocrine cells. Hnf6 is critical for terminal differentiation of the ductal epithelium during embryonic development and for pancreatic endocrine cell specification. We previously showed that, in mice, loss of Hnf6 from the pancreatic epithelium during organogenesis results in increased duct proliferation and altered duct architecture, increased periductal fibrosis and acinar-to-ductal metaplasia. Here we show that decreased expression of HNF6 is strongly correlated with increased severity of PanIN lesions in samples of human pancreata and is absent from >90% of PDAC. Mouse models in which cancer progression can be analyzed from the earliest stages that are seldom accessible in humans support a role for Hnf6 loss in progression from early to late stage PanIN and PDAC. In addition, gene expression analyses of human pancreatic cancer reveal decreased expression of HNF6 and its direct and indirect target genes compared to normal tissue and up-regulation of genes that act in opposition to HNF6 and its targets. The negative correlation between HNF6 expression and pancreatic cancer progression suggests that HNF6 maintains pancreatic epithelial homeostasis in humans, and that its loss contributes to the progression from PanIN to ductal adenocarcinoma. Insight on the role of HNF6 in pancreatic cancer development could lead to its use as a biomarker for early detection and prognosis
    corecore