264 research outputs found
K 100-летию собрания немецкой экспрессионистской лирики: антология "Сумерки человечества. Симфония новейшей поэзии" Курта Пинтуса как единое литературное произведение
В статье представлен новый междисциплинарный подход к изучению немецкоязычного собрания стихотворений экспрессионизма "Сумерки человечества: симфония новейшей поэзии", изданного Куртом Пинтусом в 1919 г.The article presents and substantiates a new interdisciplinary approach to the study of one of the most important and famous literary documents of the 20th century - the anthology of expressionist poetry in German "Twilight of Humanity: A Symphony of the Newest Poetry", published by K. Pinthus in 1919. The novelty of this approach lies in the fact that for the first time in Russian and foreign expressionist studies this literary document is not considered as a collection of "classical anthology of expressionist poetry", but as an author's book of K. Pinthus himself, as a coherent text including many multilevel interconnected elements
MASKS OF POLYPOUS RHINOSINUSITIS
Polypous rhinosinusitis is a chronic disease of the nasal mucosa and paranasal sinuses, which is characterized by recurrent growth of nasal polyps. This disease is found in 1-5% of the population. According to the data of 2017, patients with nasal polypous rhinosinusitis account for 13% of all patients treated in our clinic. Polypous rhinosinusitis can be either an independent disease or a manifestation of other diseases. Aim - to present a case from practice, which is interesting due to the fact that two independent diseases were hiding under the mask of polypous rhinosinusitis. Results. Strict administration of the diagnostic algorithm, modern principles of functional surgery of the paranasal sinuses led to the recovery of the patient
HCV IRES manipulates the ribosome to promote the switch from translation initiation to elongation.
The internal ribosome entry site (IRES) of the hepatitis C virus (HCV) drives noncanonical initiation of protein synthesis necessary for viral replication. Functional studies of the HCV IRES have focused on 80S ribosome formation but have not explored its role after the 80S ribosome is poised at the start codon. Here, we report that mutations of an IRES domain that docks in the 40S subunit's decoding groove cause only a local perturbation in IRES structure and result in conformational changes in the IRES-rabbit 40S subunit complex. Functionally, the mutations decrease IRES activity by inhibiting the first ribosomal translocation event, and modeling results suggest that this effect occurs through an interaction with a single ribosomal protein. The ability of the HCV IRES to manipulate the ribosome provides insight into how the ribosome's structure and function can be altered by bound RNAs, including those derived from cellular invaders
Glycyl-tRNA synthetase specifically binds to the poliovirus IRES to activate translation initiation
Adaptation to the host cell environment to efficiently take-over the host cell's machinery is crucial in particular for small RNA viruses like picornaviruses that come with only small RNA genomes and replicate exclusively in the cytosol. Their Internal Ribosome Entry Site (IRES) elements are specific RNA structures that facilitate the 5′ end-independent internal initiation of translation both under normal conditions and when the cap-dependent host protein synthesis is shut-down in infected cells. A longstanding issue is which host factors play a major role in this internal initiation. Here, we show that the functionally most important domain V of the poliovirus IRES uses tRNAGly anticodon stem–loop mimicry to recruit glycyl-tRNA synthetase (GARS) to the apical part of domain V, adjacent to the binding site of the key initiation factor eIF4G. The binding of GARS promotes the accommodation of the initiation region of the IRES in the mRNA binding site of the ribosome, thereby greatly enhancing the activity of the IRES at the step of the 48S initiation complex formation. Moonlighting functions of GARS that may be additionally needed for other events of the virus–host cell interaction are discussed
Differential contribution of the m7G-cap to the 5′ end-dependent translation initiation of mammalian mRNAs
Many mammalian mRNAs possess long 5′ UTRs with numerous stem-loop structures. For some of them, the presence of Internal Ribosome Entry Sites (IRESes) was suggested to explain their significant activity, especially when cap-dependent translation is compromised. To test this hypothesis, we have compared the translation initiation efficiencies of some cellular 5′ UTRs reported to have IRES-activity with those lacking IRES-elements in RNA-transfected cells and cell-free systems. Unlike viral IRESes, the tested 5′ UTRs with so-called ‘cellular IRESes’ demonstrate only background activities when placed in the intercistronic position of dicistronic RNAs. In contrast, they are very active in the monocistronic context and the cap is indispensable for their activities. Surprisingly, in cultured cells or cytoplasmic extracts both the level of stimulation with the cap and the overall translation activity do not correlate with the cumulative energy of the secondary structure of the tested 5′ UTRs. The cap positive effect is still observed under profound inhibition of translation with eIF4E-BP1 but its magnitude varies for individual 5′ UTRs irrespective of the cumulative energy of their secondary structures. Thus, it is not mandatory to invoke the IRES hypothesis, at least for some mRNAs, to explain their preferential translation when eIF4E is partially inactivated
Dizajniranje i vrednovanje okularnih umetaka moksifloksacin hidroklorida
The objective of the present investigation was to prepare and evaluate ocular inserts of moxifloxacin. An ocular insert was made from an aqueous dispersion of moxifloxacin, sodium alginate, polyvinyl alcohol, and dibutyl phthalate by the film casting method. The ocular insert (5.5 mm diameter) was cross-linked by CaCl2 and was coated with Eudragit S-100, RL-100, RS-100, E-100 or Eudragit L-100. The in vitro drug drainage/permeation studies were carried out using an all-glass modified Franz diffusion cell. The drug concentration and mucoadhesion time of the ocular insert were found satisfactory. Cross-linking and coating with polymers extended the drainage from inserts. The cross-linked ocular insert coated with Eudragit RL-100 showed maximum drug permeation compared to other formulations.Cilj rada bio je priprava i evaluacija okularnih umetaka moksifloksacina. Okularni umetak izrađen je od vodene suspenzije moksifloksacina, natrijevog alginata, polivinilnog alkohola i dibutil-ftalata metodom odlijevanja filma. Okularni umetak (promjera 5,5 mm) umrežen je pomoću CaCl2 i obložen Eudragitom S-100, RL-100, RS-100, E-100 ili Eudragit L-100. In vitro drenaža/permeacija lijeka proučavana je koristeći staklenu modificiranu Franzovu difuzijsku ćeliju. Koncentracija lijeka i vrijeme mukoadhezije okularnih umetaka bili su zadovoljavajući. Umrežavanje i oblaganje polimerima produljilo je drenažu iz umetaka. Umreženi okularni umetci obloženi s Eudragit RL-100 pokazali su veću permeaciju lijeka u odnosu na ostale pripravke
Nat Struct Mol Biol
Internal ribosome entry sites (IRESs) facilitate an alternative, end-independent pathway of translation initiation. A particular family of dicistroviral IRESs can assemble elongation-competent 80S ribosomal complexes in the absence of canonical initiation factors and initiator transfer RNA. We present here a cryo-EM reconstruction of a dicistroviral IRES bound to the 80S ribosome. The resolution of the cryo-EM reconstruction, in the subnanometer range, allowed the molecular structure of the complete IRES in its active, ribosome-bound state to be solved. The structure, harboring three pseudoknot-containing domains, each with a specific functional role, shows how defined elements of the IRES emerge from a compactly folded core and interact with the key ribosomal components that form the A, P and E sites, where tRNAs normally bind. Our results exemplify the molecular strategy for recruitment of an IRES and reveal the dynamic features necessary for internal initiation
Unidirectional constant rate motion of the ribosomal scanning particle during eukaryotic translation initiation
According to the model of translation initiation in eukaryotes, the 40S ribosomal subunit binds to capped 5′-end of mRNA and subsequently migrates along 5′-UTR in searching for initiation codon. However, it remains unclear whether the migration is the result of a random one-dimensional diffusion, or it is an energy-driven unidirectional movement. To address this issue, the method of continuous monitoring of protein synthesis in situ was used for high precision measurements of the times required for translation of mRNA with 5′-UTRs of different lengths and structures in mammalian and plant cell-free systems. For the first time, the relationship between the scanning time and the 5′-UTR length was determined and their linear correlation was experimentally demonstrated. The conclusion is made that the ribosome migration is an unidirectional motion with the rate being virtually independent of a particular mRNA sequence and secondary structure
Translation without eIF2 Promoted by Poliovirus 2A Protease
Poliovirus RNA utilizes eIF2 for the initiation of translation in cell free systems. Remarkably, we now describe that poliovirus translation takes place at late times of infection when eIF2 is inactivated by phosphorylation. By contrast, translation directed by poliovirus RNA is blocked when eIF2 is inactivated at earlier times. Thus, poliovirus RNA translation exhibits a dual mechanism for the initiation of protein synthesis as regards to the requirement for eIF2. Analysis of individual poliovirus non-structural proteins indicates that the presence of 2Apro alone is sufficient to provide eIF2 independence for IRES-driven translation. This effect is not observed with a 2Apro variant unable to cleave eIF4G. The level of 2Apro synthesized in culture cells is crucial for obtaining eIF2 independence. Expression of the N-or C-terminus fragments of eIF4G did not stimulate IRES-driven translation, nor provide eIF2 independence, consistent with the idea that the presence of 2Apro at high concentrations is necessary. The finding that 2Apro provides eIF2-independent translation opens a new and unsuspected area of research in the field of picornavirus protein synthesis
- …