10 research outputs found

    An informatics approach to distinguish RNA modifications in nanopore direct RNA sequencing

    Get PDF
    Reading RNA modifications more precisely in a pocket-sized device. 京都大学プレスリリース. 2022-08-24.Modifications in RNA can influence their structure, function, and stability and play essential roles in gene expression and regulation. Methods to detect RNA modifications rely on biophysical techniques such as chromatography or mass spectrometry, which are low throughput, or on high throughput short-read sequencing techniques based on selectively reactive chemical probes. Recent studies have utilized nanopore-based fourth-generation sequencing methods to detect modifications by directly sequencing RNA in its native state. However, these approaches are based on modification-associated mismatch errors that are liable to be confounded by SNPs. Also, there is a need to generate matched knockout controls for reference, which is laborious. In this work, we introduce an internal comparison strategy termed “IndoC, ” where features such as ‘trace’ and ‘current signal intensity’ of potentially modified sites are compared to similar sequence contexts on the same RNA molecule within the sample, alleviating the need for matched knockout controls. We first show that in an IVT model, ‘trace’ is able to distinguish between artificially generated SNPs and true pseudouridine (Ψ) modifications, both of which display highly similar mismatch profiles. We then apply IndoC on yeast and human ribosomal RNA to demonstrate that previously reported Ψ sites show marked changes in their trace and signal intensity profiles compared with their unmodified counterparts in the same dataset. Finally, we perform direct RNA sequencing of RNA containing Ψ intact with a chemical probe adduct (N-cyclohexyl-N′-β-(4-methylmorpholinium) ethylcarbodiimide [CMC]) and show that CMC reactivity also induces changes in trace and signal intensity distributions in a Ψ specific manner, allowing their separation from high mismatch sites that display SNP-like behavior

    Structural colour enhanced microfluidics

    Get PDF
    マイクロ流体デバイスの製造に革新をもたらす新手法. 京都大学プレスリリース. 2022-05-19.New process revolutionizes microfluidic fabrication. 京都大学プレスリリース. 2022-05-19.Advances in microfluidic technology towards flexibility, transparency, functionality, wearability, scale reduction or complexity enhancement are currently limited by choices in materials and assembly methods. Organized microfibrillation is a method for optically printing well-defined porosity into thin polymer films with ultrahigh resolution. Here we demonstrate this method to create self-enclosed microfluidic devices with a few simple steps, in a number of flexible and transparent formats. Structural colour, a property of organized microfibrillation, becomes an intrinsic feature of these microfluidic devices, enabling in-situ sensing capability. Since the system fluid dynamics are dependent on the internal pore size, capillary flow is shown to become characterized by structural colour, while independent of channel dimension, irrespective of whether devices are printed at the centimetre or micrometre scale. Moreover, the capability of generating and combining different internal porosities enables the OM microfluidics to be used for pore-size based applications, as demonstrated by separation of biomolecular mixtures

    Mercury toxicity following unauthorized siddha medicine intake – A mimicker of acquired neuromyotonia - Report of 32 cases

    No full text
    Context: Mercury is used extensively in the preparation of Siddha medicines, after purification. In this study, we present 32 patients of mercury toxicity following unauthorized Siddha medicine intake who mimicked neuromyotonia clinically. We analyzed the clinical features of these patients, the role of autoimmunity in etiopathology, and compared it with acquired neuromyotonia. Subjects and Methods: This is a retrospective study to analyze inpatients in a tertiary care center, admitted with mercury toxicity following Siddha medicine intake from August 2012 to October 2016. We analyzed the clinical features, laboratory data including mercury, arsenic and lead levels in blood, and serum voltage-gated potassium channels (VGKC)-CASPR2 Ab in selected patients. Results: Thirty-two patients who had high blood mercury levels following Siddha medicine intake were included in the study. All patients (100%) had severe intractable neuropathic pain predominantly involving lower limbs. Twenty-six (81.25%) patients had fasciculations and myokymia. Fifteen patients (46.86%) had autonomic dysfunction (postural hypotension and resting tachycardia). Nine (28.12%) patients had encephalopathic features such as dullness, apathy, drowsiness, or delirium. Anti-VGKC Ab was positive in 12 patients with myokymia. All the patients in the study consumed Siddha medicines obtained from unauthorized dealers. Conclusions: Mercury toxicity following Siddha medicine intake closely mimics acquired neuromyotonia; severe intolerable neuropathic pain is the hallmark feature; Positive VGKC-CASPR2 antibody in some patients must be due to triggered autoimmunity secondary to mercury toxicity due to Siddha medicine intake. The government should establish licensing system to prevent distribution of unauthorized Siddha medicines

    The model of local axon homeostasis - explaining the role and regulation of microtubule bundles in axon maintenance and pathology

    No full text
    corecore