742 research outputs found

    Gauge covariant formulation of Wigner representation through deformational quantization --Application to Keldysh formalism with electromagnetic field--

    Full text link
    We developed a gauge-covariant formulation of the non-equilibrium Green function method for the dynamical and/or non-uniform electromagnetic field by means of the deformational quantization method. Such a formulation is realized by replacing the Moyal product in the so-called Wigner space by the star product, and facilitates the order-by-order calculation of a gauge-invariant observable in terms of the electromagnetic field. An application of this formalism to the linear response theory is discussed

    Effective mass staircase and the Fermi liquid parameters for the fractional quantum Hall composite fermions

    Full text link
    Effective mass of the composite fermion in the fractional quantum Hall system, which is of purely interaction originated, is shown, from a numerical study, to exhibit a curious nonmonotonic behavior with a staircase correlated with the number (=2,4,...) of attached flux quanta. This is surprising since the usual composite-fermion picture predicts a smooth behavior. On top of that, significant interactions are shown to exist between composite fermions, where the excitation spectrum is accurately reproduced in terms of Landau's Fermi liquid picture with negative (i.e., Hund's type) orbital and spin exchange interactions.Comment: 4 pages, 3 figures, REVTe

    Magneto-optics induced by the spin chirality in itinerant ferromagnet Nd2_2Mo2_2O7_7

    Full text link
    It is demonstrated both theoretically and experimentally that the spin chirality associated with a noncoplanar spin configuration produces a magneto-optical effect. Numerical study of the two-band Hubbard model on a triangle cluster shows that the optical Hall conductivity σxy(ω)\sigma_{xy}(\omega) is proportional to the spin chirality. The detailed comparative experiments on pyrochlore-type molybdates R2R_2Mo2_2O7_7 with R=R=Nd (Ising-like moments) and R=R=Gd (Heisenberg-like ones) clearly distinguishes the two mechanisms, i.e., spin chirality and spin-orbit interactions. It is concluded that for RR=Nd, σxy(ω)\sigma_{xy}(\omega) is dominated by the spin chirality for the dc (ω=0\omega=0) and the d→dd \to d incoherent intraband optical transitions between Mo atoms.Comment: 4 pages, 5 figures. submitted to Phys. Rev.

    Topological nature of polarization and charge pumping in ferroelectrics

    Full text link
    Electric polarization or transferred charge due to an adiabatic change of external parameters Q⃗\vec{Q} is expressed in terms of a vector field defined in the Q⃗\vec{Q} space. This vector field is characterized by strings, i.e., trajectories of band-crossing points. In particular, the transverse component is given by the Biot-Savart law in a nonlocal way. For a cyclic change of Q⃗\vec{Q} along a loop C, the linking number between this string and C represents the amount of the pumped charge, which is quantized to be an integer as discussed by Thouless.Comment: 5 pages including 4 figure

    Quantum criticality around metal-insulator transitions of strongly correlated electrons

    Full text link
    Quantum criticality of metal-insulator transitions in correlated electron systems is shownto belong to an unconventional universality class with violation of Ginzburg-Landau-Wilson(GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square latticesare capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transition and with a number of numerical results beyond the mean-field level, implying that the preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. Detailed analyses on the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical "opalescence". Analyses on crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and kappa-ET-type organic conductor provide us with evidences for the existence of the present marginal quantum criticality.Comment: 24 pages, 19 figure

    Exchange interactions and magnetic properties of the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9

    Full text link
    We have performed ab-initio calculations of exchange couplings in the layered vanadates CaV2O5, MgV2O5, CaV3O7 and CaV4O9. The uniform susceptibility of the Heisenberg model with these exchange couplings is then calculated by quantum Monte Carlo method; it agrees well with the experimental measurements. Based on our results we naturally explain the unusual magnetic properties of these materials, especially the huge difference in spin gap between CaV2O5 and MgV2O5, the unusual long range order in CaV3O7 and the "plaquette resonating valence bond (RVB)" spin gap in CaV4O9
    • …
    corecore