256 research outputs found
Symmetry characterization of eigenstates in opal-based photonic crystals
The complete symmetry characterization of eigenstates in bare opal systems is
obtained by means of group theory. This symmetry assignment has allowed us to
identify several bands that cannot couple with an incident external plane wave.
Our prediction is supported by layer-KKR calculations, which are also
performed: the coupling coefficients between bulk modes and externally excited
field tend to zero when symmetry properties mismatch.Comment: 7 pages, 5 figures, submitted to Physical Review
Exotic radiation from a photonic crystal excited by an ultra-relativistic electron beam
We report the observation of an exotic radiation (unconventional
Smith-Purcell radiation) from a one-dimensional photonic crystal. The physical
origin of the exotic radiation is direct excitation of the photonic bands by an
ultra-relativistic electron beam. The spectrum of the exotic radiation follows
photonic bands of a certain parity, in striking contrast to the conventional
Smith-Purcell radiation, which shows solely a linear dispersion. Key
ingredients for the observation are the facts that the electron beam is in an
ultra-relativistic region and that the photonic crystal is finite. The origin
of the radiation was identified by comparison of experimental and theoretical
results.Comment: 4 pages, 5 figure
Path-decomposition expansion and edge effects in a confined magnetized free-electron gas
Path-integral methods can be used to derive a `path-decomposition expansion'
for the temperature Green function of a magnetized free-electron gas confined
by a hard wall. With the help of this expansion the asymptotic behaviour of the
profiles for the excess particle density and the electric current density far
from the edge is determined for arbitrary values of the magnetic field
strength. The asymptotics are found to depend sensitively on the degree of
degeneracy. For a non-degenerate electron gas the asymptotic profiles are
essentially Gaussian (albeit modulated by a Bessel function), on a length scale
that is a function of the magnetic field strength and the temperature. For a
completely degenerate electron gas the asymptotic behaviour is again
proportional to a Gaussian, with a scale that is the magnetic length in this
case. The prefactors are polynomial and logarithmic functions of the distance
from the wall, that depend on the number of filled Landau levels . As a
consequence, the Gaussian asymptotic decay sets in at distances that are large
compared to the magnetic length multiplied by .Comment: 16 pages, 2 figures, submitted to J. Phys. A: Math. Gen; corrected
small typ
Comparison of flow angle variations of E-region echo characteristics at VHF and HF
In this study, characteristics of the auroral E-region echoes at two significantly different radar frequencies of 12 and 50 MHz are compared. Considered observations were performed at the Syowa Antarctic station in March of 1997 using two HF and one VHF radars at various angles with respect to the magnetic L shells. The diurnal variation of echo occurrence was found to be similar at two frequencies and consistent with previous studies. On the other hand, variation of echo occurrence with L-shell angle φ was shown to be significantly different at two frequencies. 50-MHz echoes were detected preferentially along the L shell (dominating direction of the electrojet flow) while 12-MHz echoes were detected in a broad range of azimuths with the maximum in echo occurrence at φ=40-50°. By plotting the Doppler velocity versus L-shell angle, we demonstrate that 12-MHz echoes can be divided into two populations, the high- and low-velocity echoes. The high-velocity echoes were observed mostly along the L shells while the low-velocity echoes were observed at all directions. We also show that the echo populations exhibit different variation of the Doppler velocity with the L-shell angle. We argue that while the 50-MHz echoes are related to the Farley-Buneman and gradient drift plasma instabilities, the 12-MHz echoes can have additional sources, such as the thermo-diffusion instability and/or neutral wind-related plasma instabilities
Photonic Band Gaps of Three-Dimensional Face-Centered Cubic Lattices
We show that the photonic analogue of the Korringa-Kohn-Rostocker method is a
viable alternative to the plane-wave method to analyze the spectrum of
electromagnetic waves in a three-dimensional periodic dielectric lattice.
Firstly, in the case of an fcc lattice of homogeneous dielectric spheres, we
reproduce the main features of the spectrum obtained by the plane wave method,
namely that for a sufficiently high dielectric contrast a full gap opens in the
spectrum between the eights and ninth bands if the dielectric constant
of spheres is lower than the dielectric constant of
the background medium. If , no gap is found in the
spectrum. The maximal value of the relative band-gap width approaches 14% in
the close-packed case and decreases monotonically as the filling fraction
decreases. The lowest dielectric contrast for which a
full gap opens in the spectrum is determined to be 8.13. Eventually, in the
case of an fcc lattice of coated spheres, we demonstrate that a suitable
coating can enhance gap widths by as much as 50%.Comment: 19 pages, 6 figs., plain latex - a section on coated spheres, two
figures, and a few references adde
Poles and zeros of the scattering matrix associated to defect modes
We analyze electromagnetic waves propagation in one-dimensional periodic
media with single or periodic defects. The study is made both from the point of
view of the modes and of the diffraction problem. We provide an explicit
dispersion equation for the numerical calculation of the modes, and we
establish a connection between modes and poles and zeros of the scattering
matrix.Comment: 6 pages (Revtex), no figure
Correlations in a confined magnetized free-electron gas
Equilibrium quantum statistical methods are used to study the pair
correlation function for a magnetized free-electron gas in the presence of a
hard wall that is parallel to the field. With the help of a path-integral
technique and a Green function representation the modifications in the
correlation function caused by the wall are determined both for a
non-degenerate and for a completely degenerate gas. In the latter case the
asymptotic behaviour of the correlation function for large position differences
in the direction parallel to the wall and perpendicular to the field, is found
to change from Gaussian in the bulk to algebraic near the wall.Comment: 24 pages, 10 figures, submitted to J. Phys. A: Math. Ge
Strong quantum memory at resonant Fermi edges revealed by shot noise
Studies of non-equilibrium current fluctuations enable assessing correlations
involved in quantum transport through nanoscale conductors. They provide
additional information to the mean current on charge statistics and the
presence of coherence, dissipation, disorder, or entanglement. Shot noise,
being a temporal integral of the current autocorrelation function, reveals
dynamical information. In particular, it detects presence of non-Markovian
dynamics, i.e., memory, within open systems, which has been subject of many
current theoretical studies. We report on low-temperature shot noise
measurements of electronic transport through InAs quantum dots in the
Fermi-edge singularity regime and show that it exhibits strong memory effects
caused by quantum correlations between the dot and fermionic reservoirs. Our
work, apart from addressing noise in archetypical strongly correlated system of
prime interest, discloses generic quantum dynamical mechanism occurring at
interacting resonant Fermi edges.Comment: 6 pages, 3 figure
Electron spin resonance in high-field critical phase of gapped spin chains
Motivated by recent experiments on Ni(C_{2}H_{8}N_{2})_{2}Ni(CN)_{4}
(commonly known as NENC), we study the electron spin resonance in the critical
high-field phase of the antiferromagnetic S=1 chain with strong planar
anisotropy and show that the ESR spectra exhibit several peculiarities in the
critical phase. Possible relevance of those results for other gapped spin
systems is discussed.Comment: 8 revtex pages, 1 eps figure include
Scattering of elastic waves by periodic arrays of spherical bodies
We develop a formalism for the calculation of the frequency band structure of
a phononic crystal consisting of non-overlapping elastic spheres, characterized
by Lam\'e coefficients which may be complex and frequency dependent, arranged
periodically in a host medium with different mass density and Lam\'e
coefficients. We view the crystal as a sequence of planes of spheres, parallel
to and having the two dimensional periodicity of a given crystallographic
plane, and obtain the complex band structure of the infinite crystal associated
with this plane. The method allows one to calculate, also, the transmission,
reflection, and absorption coefficients for an elastic wave (longitudinal or
transverse) incident, at any angle, on a slab of the crystal of finite
thickness. We demonstrate the efficiency of the method by applying it to a
specific example.Comment: 19 pages, 5 figures, Phys. Rev. B (in press
- …