169 research outputs found
Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
Tongue-computer interfaces have shown the potential to control assistive devices developed for individuals with severe disabilities. However, current efficient tongue-computer interfaces require invasive methods for attaching the sensor activation units to the tongue, such as piercing. In this study, we propose a noninvasive tongue-computer interface to avoid the requirement of invasive activation unit attachment methods. We developed the noninvasive tongue-computer interface by integrating an activation unit on a frame, and mounting the frame on an inductive tongue-computer interface (ITCI). Thus, the users are able to activate the inductive sensors on the interface by positioning the activation unit with their tongue. They also do not need to remount the activation unit before each use. We performed pointing tests for controlling a computer cursor and number typing tests with two able-bodied participants, where one of them was experienced with using invasive tongue-computer interfaces and other one had no experience. We measured throughput and movement error for pointing tasks, and speed and accuracy for number typing tasks for the evaluation of the feasibility and performance of the developed noninvasive system. Results show that the inexperienced participant achieved similar results with the developed noninvasive tongue-computer interface compared to the current invasive version of the ITCI, while the experienced participant performed better with the invasive tongue-computer interface
Towards tunable graphene phononic crystals
Phononic crystals (PnCs) are artificially patterned media exhibiting bands of allowed and forbidden zones for phonons—in analogy to the electronic band structure of crystalline solids arising from the periodic arrangement of atoms. Many emerging applications of PnCs from solid-state simulators to quantum memories could benefit from the on-demand tunability of the phononic band structure. Here, we demonstrate the fabrication of suspended graphene PnCs in which the phononic band structure is controlled by mechanical tension applied electrostatically. We show signatures of a mechanically tunable phononic band gap. The experimental data supported by simulation suggests a phononic band gap at 28–33 MHz in equilibrium, which upshifts by 9 MHz under a mechanical tension of 3.1 N m−1. This is an essential step towards tunable phononics paving the way for more experiments on phononic systems based on 2D materials
Differing myocardial response to a single session of hemodialysis in end-stage renal disease with and without type 2 diabetes mellitus and coronary artery disease
BACKGROUND: Though hemodialysis (HD) acutely improves cardiac function, the impact of background diseases like coronary artery disease (CAD) and Type 2 diabetes (DM) in the setting of end-stage renal disease (ESRD) is not known. Tissue velocity echocardiography (TVE) offers a fast choice to follow changes in myocardial function after HD in ESRD with concomitant DM and /or CAD. METHODS: 46 subjects (17 with ESRD, Group 1; 15 with DM, Group 2; 14 with DM+CAD, Group 3) underwent standard and TVE prior to and shortly after HD. Besides standard Doppler variables, regional myocardial systolic and diastolic velocities, as well as systolic strain rate were post processed. RESULTS: Compared with pre-HD, post-HD body weight (kg) significantly decreased in all the three groups (51 ± 9 vs. 48 ± 8, 62 ± 10 vs.59 ± 10, and 61 ± 9 vs. 58 ± 9 respectively; all p < 0.01). Left ventricular end diastolic dimensions (mm) also decreased post- HD (46 ± 5 vs. 42 ± 7, 53 ± 7 vs. 50 ± 7, 51 ± 7 vs. 47 ± 8 respectively; all p < 0.01). Regional longitudinal peak systolic velocity in septum (cm/s) significantly increased post-HD in Group 1(5.7 ± 1.6 vs. 7.2 ± 2.3; p < 0.001) while remained unchanged in the other two groups. Similar trends were noted in other left ventricular walls. When the myocardial velocities (cm/s) were computed globally, the improvement was seen only in Group 1 (6.3 ± 1.5 vs. 7.9 ± 2.0; p < 0.001). Global early regional diastolic velocity (cm/s) improved in Group 1, remained unchanged in Group 2, while significantly decreased in Group 3(-5.9 ± 1.3 vs. -4.1 ± 1.8; p < 0.01). Global systolic strain rate (1/sec) increased in the first 2 Groups but remained unchanged (-0.87 ± 0.4 vs. -0.94 ± 0.3; p = ns) in Group 3. CONCLUSION: A single HD session improves LV function only in ESRD without coexistent DM and/or CAD. The present data suggest that not only dialysis-dependent changes in loading conditions but also co-existent background diseases determine the myocardial response to HD
Fungal systematics and evolution : FUSE 7
publishedVersio
Technology Diffusion, Abatement Cost and Transboundary Pollution
This paper studies countries' incentives to develop advanced pollution abatement technology when technology may spillover across countries and pollution abatement is a global public good. We are motivated in part by the problem of global warming: a solution to this involves providing a global public good, and will surely require the development and implementation of new technologies. We show that at the Nash equilibrium of a simultaneous-move game with R&D investment and emission abatement, whether the free rider effect prevails and under-investment and excess emissions occur depends on the degree of technology spillovers and the effect of R&D on the marginal abatement costs. There are cases in which, contrary to conventional wisdom, Nash equilibrium investments in emissions reductions exceed the first-best case
Impact of Cultural Tourism Upon Urban Economies: An Econometric Exercise
In recent years, interest in tourism has spread rapidly throughout many small and medium European cities, which previously have not necessarily considered themselves as tourist destinations. Tourism is increasingly seen as a potential lever towards high economic growth, measured both in terms of income and employment. In the present Working Paper we report the analysis on the economic impact undertaken in the framework of the PICTURE Project, showing the results of a novel econometric exercise to statistically assess the impacts of cultural tourism upon European municipalities. More precisely the analysis aims at estimating the effects of tourism specialisation on local income and prices. The Working Paper is built as follows. Section 1 presents and discusses secondary data about tourism facts and figures, including the economic impact of tourism upon European economies, with a focus on cultural tourism. An extensive review of literature, which identifies the main categories of impacts and the currently available methodologies to assess them, is undertaken. Section 2 focuses on the state of the art. Section 3 describes the database built for the analysis, sources and variables. In order to visually represent the spatial variability of the main parameters, a series of thematic maps at NUTS 3 level(Maps of European tourism), using GIS (Geographical Information System) are also included in the Working Paper. Section 4 shows the results of the econometric analysis of European panel data for the estimation of the effects of tourism specialisation on both local incomes and prices. Section 5 concludes
Effect of Body Mass Index on work related musculoskeletal discomfort and occupational stress of computer workers in a developed ergonomic setup
<p>Abstract</p> <p>Background</p> <p>Work urgency, accuracy and demands compel the computer professionals to spend longer hours before computers without giving importance to their health, especially body weight. Increase of body weight leads to improper Body Mass Index (BMI) may aggravate work related musculoskeletal discomfort and occupational-psychosocial stress. The objective of the study was to find out the effect of BMI on work related musculoskeletal discomforts and occupational stress of computer workers in a developed ergonomic setup.</p> <p>Methods</p> <p>A descriptive inferential study has been taken to analyze the effect of BMI on work related musculoskeletal discomfort and occupational-psychosocial stress. A total of 100 computer workers, aged 25-35 years randomly selected on convenience from software and BPO companies in Bangalore city, India for the participation in this study. BMI was calculated by taking the ratio of the subject's height (in meter) and weight (in kilogram). Work related musculoskeletal discomfort and occupational stress of the subjects was assessed by Cornell University's musculoskeletal discomfort questionnaire (CMDQ) and occupational stress index (OSI) respectively as well as a relationship was checked with their BMI.</p> <p>Results</p> <p>A significant association (p < 0.001) was seen among high BMI subjects with their increase scores of musculoskeletal discomfort and occupational stress.</p> <p>Conclusion</p> <p>From this study, it has been concluded that, there is a significant effect of BMI in increasing of work related musculoskeletal discomfort and occupational-psychosocial stress among computer workers in a developed ergonomic setup.</p
Technology Transfer in the Non-Traded Sector as a Means to Combat Global Warming
The paper considers a situation where two countries - the North and the South - use a non-traded polluting input to produce the goods for final consumption. The North is more efficient in both, production and abatement processes. The study compares the effects of the transfer of abatement technology by the North to the South under autarky with the free trade situation, assuming that the North pre-commits to an international protocol to keep the global pollution under a fixed level. The conditions under which either full or partial technology is transferred in autarky are determined. It is shown that under free trade no such transfer is possible. With trade even though the North wants a complete transfer of technology, the South refuses it
- …